
1

UNIT-IV

LIST,TUPLES,DICTIONARIES

TWO MARKS:

1. Define List with example?

 A List is an ordered set of values, where each value is identified by an index.

 The Values that make up a list are called its elements or items.

Example 1:[10, 20, 30, 40] # list of four integers

Example 2:['frog', 'Dog', 'Cow'] # list of three strings

2. What are the list operations?

 Lists respond to the + and * operators much like strings; they mean concatenation and

repetition here too, except that the result is a new list, not a string.

 The + operator concatenates lists:

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> print c

[1, 2, 3, 4, 5, 6]

 Similarly, the * operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, 0]# It repeats [0] four times

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3] # It repeats the list [1, 2, 3] three times.

3. Describe list slicing with examples.

 A sub-sequence of a sequence is called a slice and the operation that performs on

subsequence is called slicing.

The slice operator also works on lists:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3]

Output : ['b', 'c']

>>> t[:4]

Output:['a', 'b', 'c', 'd']

>>> t[3:]

Output:['d', 'e', 'f']

>>> t[:]

Output : ['a', 'b', 'c', 'd', 'e', 'f']

4. What is Cloning of List?

 Cloning is the process of modifying a list and also keeps a copy of the original.

The entire list is copied not just the reference.

 This process is sometimes called cloning, to avoid the ambiguity of the copy.

 The easiest way to clone a list is to use the slice operator.

2

Example:

>>>a=[1,2,3]

>>>b=a[:]

>>>print b

[1,2,3].

5. Illustrate negative indexing in list with an example.

 Index can have negative value, it counts backward from the list.

Example:

>>> Fruit = ['Apple', 'Grapes', 'Orange']

>>>Fruit(0) = ‘pear’

>>>Fruit(-1) = ‘Jackfruit’

>>>print (fruit)

[‘pear’, ‘grape’, ‘Jackfruit’]

6. What is Aliasing?

 More than one list variable can point to the same data. This is called an alias.

 If ‘A’ refers to an object and you assign ‘ B = A’, then both variables refer to the same

object:

>>> A = [1, 2, 3]

>>> B= A

>>> B is A

True

7. What is the purpose of list methods? Types of List method?

 Python has a number of built-in data structures, including lists.

 Data structures provides us with a way to organize and store data.

 We can use built-in methods to retrieve or manipulate that data.

1.List.append() 5.List.insert () 9.List.reverse()

2.List.remove() 6.List.pop () 10.List.clear ()

3.List.copy () 7.List.sort () 11.List.index ()

4.List. Count () 8.List.extend ()

8. What is the List Parameter?

 Passing a list as an argument actually passes a reference to the list, not a copy of the list.

Since list mutable changes made to the parameter changes the argument as well.

 When you pass a list to a function, the function gets a reference to the list. If the function

modifies a list parameter, the caller sees the change.

For example, delete_head removes the first element from a list:

def delete_head(t):

del t[0]

Here’s how it is used:

>>> letters = ['a', 'b', 'c']

>>> delete_head(letters)

>>> print letters

['b', 'c'].

3

9. Define Tuples?

 A tuple is a sequence of values.

 The values can be any type, and they are indexed by integers, so in that respect tuples are a

lot like lists. The important difference is that tuples are immutable.

Syntactically, a tuple is a comma-separated list of values:

>>> t = 'a', 'b', 'c', 'd', 'e'

Although it is not necessary, it is common to enclose tuples in parentheses:

>>> t = ('a', 'b', 'c', 'd', 'e')

To create a tuple with a single element, you have to include the final comma:

>>> t1 = ('a',)

>>> type(t1)

<type 'tuple'>

10. Give Example for Tuple Assignment?

 One of the unique features of the python language is the ability to have a tuple on the left

hand side of an assignment statement.

 This allows you to assign more than one variable at a time when the left hand side is a

sequence.

Example:

Two element in list (which is a sequence) and assign the first and second elements of the variables

x and y in a single statement.

>>> m = (‘have’, ‘fun’)

>>> x,y= m

>>> x

‘have’

>>>y

‘fun’

11. Give Example for Tuple as Return Values?

 A function can only return one value, but if the value is a tuple, the effect is the same as

returning multiple values.

Example:

 >>> t = divmod(7, 3)

>>> print t

(2, 1)

Or use tuple assignment to store the elements separately:

>>> quot, rem = divmod(7, 3)

>>> print quot

2

>>> print rem

1

12. What is List comprehension?Give Eg.

 A list Comprehension is a convenient way to produce a list from an iterable (a sequence

or other object that can be iterated over).

 In the simplest form, a list comprehension resembles the header line of a “for Statement”

inside square brackets.

Syntax : [Expr(x) for x in iterable]

4

Example:

>>> a = [11,22,33,44]

>>> b =[x*2 for x in a]

>>>b

[22,44,66,88]

13. List the function of Tuple Data Types?

S.No Function Description

1 Cmp(tup1,tup2) Compare elements of both tuples

2 Len(tuple) Gives the total length of the tuple

3 Max(tuple) Returns item from the tuple with max value

4 Min(tuple) Returns item from the tuple with min value

5 Sorted(tuple) Sort the tuple in ascending or descending

14. What is the difference between Tuples and List in Python?

 The main difference between list and tuples are:

 List are enclose in square bracket [] and their elements size can be changed, while tuples

are enclosed in parentheses () and cannot be updated.

15. Define Mutable and Immutable data type?

 Immutable data value: A data value which cannot be modified. Assignments to elements

or slices of immutable values causes a runtime error

 Mutable data value: A data value which can be modified .The Types of all mutable value

are compound types.List and dictionaries are Mutable; Strings and Tuple are not.

16. Differentiate between append() and extend () methods?

 Both append () and extend () methods belong to the list method.These methods are used to

add the elements to the list.

 Append(element) – adds the given element at the end of the list or at the given index

postion which has called this method

 Extend (another_list)- adds the element of another-list at the end of the list which is called

the extend method.

17. When is a dictionary used instead of a list?

 Dictionaries are best suited when the data is labelled ie. The data is a record with field

names.

 List are better option to store collection of un-labelled items say all the files and sub-

directories in a folder.

 Generally search operation on dictionary object is faster than searching a list objects

.

5

18. Differentiate between tuples and dictionaries.

Tuples Dictionaries

 A tuple is a sequence of values.

 The values can be any type, and they are

indexed by integers, so in that respect

tuples are a lot like lists. The important

difference is that tuples are immutable.

 Python dictionary are kind of hash table

type.

 Dictionary work like associative arrays or

hashes found in perl and consist of key

value pairs.

19. Define dictionary with an example.

 Dictionary is one of the compound data type like strings, list and tuple. Every element in a

dictionary is the key-value pair.

 An empty dictionary without any items is written with just two curly braces, like this: {}.

Example:

>>> eng2sp = {}

>>> eng2sp["one"] = "uno"

>>> eng2sp["two"] = "dos"

>>> print(eng2sp)

Output:

{"two": "dos", "one": "uno"}

20. What is the output of Print List + tinylist*2?

 If List = [‘abcd’, ‘786’, ‘2.23’, ‘Nita’, ‘70.2’] and tinylist = [‘123’, ‘Nita’]?

 It will print the concatenated list since it has the (+) operator.

 Ouput will be [‘abcd’, ‘786’, ‘2.23’, ‘Nita’, ‘70.2’, ‘123’, ‘Nita’, ‘123’, ‘Nita’]

21. How will u create a Dictionary in Python?

 A dictionary can be Created by specifying the key and value separated by colon(:) and the

elements are separated by comma (,).The entire set of elements must be enclosed by curly

braces {}.

Syntax:

#To Create a Dictionary with Key-Value Pairs:

dict={Key 1:Value 1, Key 2:Value 2, Key 3:Value 3, Key 4:Value 4}

#To create an empty Dictionary

Dict={ }

6

22. List out the methods on dictionaries?

S.No Method Description

1 dict.clear() Removes all elements of dictionary dict

2 dict.copy() Removes all elements of dictionary dict

3 dict.items() Returns a list of dict's (key, value) tuple pairs

4 dict.keys() Returns list of dictionary dict's keys

5 dict.values() Returns list of dictionary dict's values

23. List out the operations on dictionaries?

Operation Description

cmp(dict1, dict2) Compares elements of both dict.

len(dict)

Gives the total length of the dictionary.

str(dict)

Produces a printable string representation of a dictionary

type (variable)

Returns the type of the passed variable. If passed variable is dictionary,

then it would return a dictionary type.

https://www.tutorialspoint.com/python/dictionary_copy.htm
https://www.tutorialspoint.com/python/dictionary_keys.htm
https://www.tutorialspoint.com/python/dictionary_values.htm
https://www.tutorialspoint.com/python/dictionary_cmp.htm
https://www.tutorialspoint.com/python/dictionary_len.htm
https://www.tutorialspoint.com/python/dictionary_str.htm
https://www.tutorialspoint.com/python/dictionary_type.htm

7

16 MARKS

1. What is List Values? Describe about creating a list, accessing the values in list, deleting a list,

updating a list.

LIST VALUES:

 A List is an ordered set of values, where each value is identified by an index.

 The Values that make up a list are called its elements or items.

 Lists are similar to strings, which are ordered set of characters, except that the element of

a list can have any type.

CREATING A LIST:

There are several ways to create a new list, the simplest is to enclose the elements in square Bracket

[]

[10, 20, 30, 40] # list of four integers

['frog', 'Dog', 'Cow'] # list of three strings

The elements of a list don’t have to be the same type.

['spam', 2.0, 5, [10, 20]] # list contains a string, a float, an integer, and another list:

A list within another list is nested.

A list that contains no elements is called an empty list;

 We can create one with empty brackets [].

ACCESSING VALUES IN LIST:

 We can assign list values to variables:

>>> Fruits = ['Apple', 'Watermelon', 'Banana']

>>> numbers = [17, 12.3]

>>> empty = []

>>> print (Fruits)

>>>print(numbers)

>>>print(empty)

Output:

['Apple', 'Watermelon', 'Banana']

 [17, 12.3]

 []

DELETING A LIST:

 Any element in the list can be deleted, del removes an element from a list.

Example:

>>> a=(‘one’,’two’,’three’)

>>>del a(1)

>>>a

8

Output:

(‘one’,’three’)

UPDATING A LIST:

A slice operator on the left side of an assignment can update multiple elements:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3] = ['x', 'y']

>>> print t

Output: ['a', 'x', 'y', 'd', 'e', 'f'].

2. Explain the basic List Operations and list slices in details with necessary programs.

LIST OPERATIONS:

24. Lists respond to the + and * operators much like strings; they mean concatenation and

repetition here too, except that the result is a new list, not a string.

Python Expression Description Results

len([1, 2, 3]) Length 3

[1, 2, 3] + [4, 5, 6] Concatenation [1, 2, 3, 4, 5, 6]

['Hi!'] * 4 Repetition ['Hi!', 'Hi!', 'Hi!', 'Hi!']

3 in [1, 2, 3] Membership True

The + operator concatenates lists:

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> print c

[1, 2, 3, 4, 5, 6]

Similarly, the * operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, 0]# It repeats [0] four times

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3] # It repeats the list [1, 2, 3] three times.

LIST SLICES:

 A sub-sequence of a sequence is called a slice and the operation that performs on

subsequence is called slicing.

The slice operator also works on lists:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3]

Output : ['b', 'c']

>>> t[:4]

Output:['a', 'b', 'c', 'd']

>>> t[3:]

Output:['d', 'e', 'f']

9

>>> t[:]

Output : ['a', 'b', 'c', 'd', 'e', 'f']

Since lists are mutable, it is often useful to make a copy before performing operations..

A slice operator on the left side of an assignment can update multiple elements:

>>> t = ['a', 'b', 'c', 'd', 'e', 'f']

>>> t[1:3] = ['x', 'y']

>>> print t

Output: ['a', 'x', 'y', 'd', 'e', 'f'].

3. Discuss the Python List Methods with examples.(16 mark)

Python provides methods that operate on lists.

The various methods used in list are:

1.List.append() 5.List.pop () 9. List.clear ()

2.List.remove() 6.List.sort () 10. List.index ()

3. List. Count () 7.List.extend ()

4. List.insert () 8.List.reverse()

1.List.append(): 2. List.remove ()

 The method append () appends a passed

obj into the existing list.

Example

Eg 1:

x = [123, 'xyz', 'zara', 'abc'];

x.append (2009);

print ("Updated List : ", x)

Output: Updated List: [123, 'xyz', 'zara', 'abc',

2009]

Eg 2:

>>> t = ['a', 'b', 'c']

>>> t.append('d')

>>> print (t)

Output:['a', 'b', 'c', 'd']

 List.remove() method is to remove the

object from the list.

 List.remove() method does not return any

value but removes the given object from

the list.

Example

y = [123, 'xyz', 'zara', 'abc', 'xyz'];

y.remove('xyz');

print("List 1 : ", y);

y.remove('abc');

print("List 2: ", y)

Output:

List 1: [123, 'zara', 'abc', 'xyz']

List 2: [123, 'zara', 'xyz'

3. List.count () 4. List.insert ()

 The method returns the count of how

many times an element occurs in specified

list.

Example

X = [123, 'xyz', 'zara', 'abc', 'xyz',123, ‘xyz’];

Print (“Count for 123:”,X.count(123))

Print (“Count for Zara:”,X.count(‘zara’))

Print (“Count for xyz:”,X.count(‘xyz’))

Output:

Count for 123: 2

Count for Zara: 1

Count for xyz: 3

 List.insert () method inserts an object

into the list at the offset of an index.

 Syntax : List.insert (index,object) #index

position starts from 0.

Example

X = [123, 'xyz', 'zara', 'abc'];

X.insert (3,2009)

Print(“Final List :”,X)

Output:

Final List: [123, 'xyz', 'zara', 2009,'abc'];

10

5. List.pop () 6. List.Sort ()

 List.pop () method is used to return the

item at the given index position from the

list and the removes that item.

Example

X = [123, 'xyz', 'zara', 'abc'];

Print(“List 1 :”,X.pop(0))

Print (“List 2: ”, X.pop(3))

Output:

List 1: ['xyz', 'zara', 2009,'abc'];

List 2: [123, 'xyz', 'zara',]

 List.Sort () method is used to sort the

items in the list.

Example

X = [54, 12, 85, 65, 74, 90];

Print(“sorted list:”, X.sort ())

Output:

Sorted list= [12,54 ,65,74,85,90]

7.List.reverse () 8. List.clear ()

 List.reverse ()can reverse the order of

items in a list by using this method.

Example

X = [123, 'xyz', 'zara', 'abc',’xyz’];

X.reverse()

Print (“List 1 :”,X)

Output: List 1: ['xyz', 'abc', 'zara', 'xyz',
123]

 List.clear() can remove all values

contained in it by using this method.

Example

X = [123, 'xyz', 'zara', 'abc',’xyz’];

X..clear()

 Print (X)

Output:

[]

 We get square bracket as our output after

using list.clear () method , it implies that

the list is now clear of all items.

9.List.index () 10.List.extend ()

 When list starts to get long, it becomes

more difficult for us to count out the

items in the list.

 So we determine at what index position

the items are located.

Example

x = [123, 'xyz', 'zara', 'abc'];

Print(“Index for xyz:”, x.index(‘xyz’))

Print(“Index for 123:”,x.index(123))

Print(“Index for zara:”,x.index(‘Zara’)

Output:

Index for xyz: 1

Index for 123: 0

Index for zara: 2

 If we want to combine more than one list

, we use extend method .

Example

Eg 1:

X = [123, 'xyz', 'zara', 'abc', 123];

Y = [2009, 'manni'];

X.extend(Y)

Print(X)

Output:

Extended List= [123, 'xyz', 'zara', 'abc', 123,2009,

‘manni’];

11

4. Discuss about the list loop, list mutability with examples.(8 mark)

 In List loop, we use a loop to access all the element in a list. A loop is a block of code that

repeats itself until it run out of items to work with or until a certain condition is met.

 Our loop will run once for every item in our list,

#LIST LOOPING EXAMPLE 1:

Colours_list=[“red”, “green”, “yellow”, “blue”, “purple”]

for i in colours_list:

Print(i)

Output:

Colours in the list

Red

Green

Yellow

Blue

Purple.

EXAMPLE 2:

Month_list = [“Jan”, “Feb”, “March”, “April”, “May”]

Print(“months in the list”)

for month in month_list:

Print (month)

OUTPUT:

Months in the list

Jan

Feb

March

April

May

List Mutability:

 Mutability is the ability for certain types of data to be changed without entirely recreating it.

 List is a mutable data type; which mean we can change their element.

 The syntax for accessing the elements of a list is the same as for accessing the characters of

a string—the bracket operator.

 The expression inside the brackets specifies the index. Remember that the indices start at 0.

>>> Fruit = ['Apple', 'Grapes', 'Orange']

>>>print (fruit(0))

Apple

>>> numbers = [17, 123]

>>> numbers[1] = 5

>>> print numbers

[17, 5]

List

0 “Apple”

1 “Grapes”

2 “Orange”

Fruit

List

 0 17

1 123

 5

Number

12

 Lists are represented by boxes with the word “list” outside and the elements of the list

inside.

 Fruits refer to a list with three elements indexed 0, 1 and 2.

 Numbers contains two elements; the diagram shows that the value of the second element has

been reassigned from 123 to 5.

.

The in operator also works on lists.

>>> Fruit = ['Apple', 'Grapes', 'Orange']

>>> ‘Apple’ in Fruit

True

>>> ‘Watermelon’ in Fruit

False

Index can have negative value, it counts backward from the list.

Example:

>>> Fruit = ['Apple', 'Grapes', 'Orange']

>>>Fruit(0) = ‘pear’

>>>Fruit(-1) = ‘Jackfruit’

>>>print (fruit)

[‘pear’, ‘grape’, ‘Jackfruit’]

#List Mutable Example

Colours_list=[“red”, “green”, “blue”, “purple”]

Print (“original list:”,colour_list)

#red is changed to pink

Colour_list[0]= “pink”

#blue is change to orange

Colour_list [-2] = “orange”

Print(colour_list)

Output:

Original List =[“red”, “green”, “blue”, “purple”]

[“pink”, “green”, “orange”, “purple”].

5. Discuss about the list aliasing, cloning list and list parameter with examples.

LIST ALIASING:

 Since variables refer to object, If ‘A’ refers to an object and you assign ‘ B = A’, then both

variables refer to the same object:

>>> A = [1, 2, 3]

>>> B= A

>>> B is A

True

 In this case, Diagram looks like this

A

B

[1,2,3]

13

 The association of a variable with an object is called a reference. In this example, there are

two references to the same object.

 An object with more than one reference has more than one name, then the object is said to

be aliased.

If the aliased object is mutable, changes made with one alias affect the other:

>>> B[0] = 9

>>> print A

[9, 2, 3]

 Although this behaviour can be useful, it is error-prone. In general, it is safer to avoid

aliasing when you are working with mutable objects.

 For immutable objects like strings, aliasing is not as much of a problem.

In this example:

A = ('banana')

B=('banana')

It almost never makes a difference whether A and B refer to the same string or not.

CLONING LIST:

 If we want to modify a list and also keep a copy of the original, we need to be able to make

a copy of the list itself, not just the reference.

 This process is sometimes called cloning, to avoid the ambiguity of the copy.

 The easiest way to clone a list is to use the slice operator

>>>a=[1,2,3]

>>>b=a[:]

>>>print b

[1,2,3]

 Taking any slice, creates a new list. In this case the slice happens to consists of the whole

list.

 Now we are free to make changes to b without worrying about list ‘a’.

>>>b[0]=5

>>>print a

>>>print b

[1,2,3]

[5,2,3]

LIST PARAMETERS:

 Passing a list to a function, the function gets a reference to the list. If the function modifies a

list parameter, the caller sees the change.

For example, delete_head removes the first element from a list:

def delete_head(t):

del t[0]

Here’s how it is used:

>>> letters = ['a', 'b', 'c']

>>> delete_head(letters)

>>> print letters

['b', 'c']

14

 The parameter t and the variable letters are aliases for the same object. The stack diagram

looks like this:

 Since the list is shared by two frames, I drew it between them.

 It is important to distinguish between operations that modify lists and operations that create

new lists.

 For example, the append method modifies a list, but the + operator creates a new list:

>>> t1 = [1, 2]

>>> t2 = t1.append(3)

>>> print t1

[1, 2, 3]

>>> print t2

None

>>> t3 = t1 + [3]

>>> print t3

[1, 2, 3]

>>> t2 is t3

False.

6. Explain about tuples and also the concept of tuple assignment and tuples as return value with

example.

 A tuple is a sequence of values.

 The values can be any type, and they are indexed by integers, so in that respect tuples a like

lists. The important difference is that tuples are immutable.

 Syntactically, a tuple is a comma-separated list of values:

>>> t = 'a', 'b', 'c', 'd', 'e'

 Although it is not necessary, it is common to enclose tuples in parentheses:

>>> t = ('a', 'b', 'c', 'd', 'e')

 To create a tuple with a single element, you have to include the final comma:

>>> t1 = ('a',)

>>> type(t1)

<type 'tuple'>

 Without the comma, Python treats ('a') as a string in parentheses:

>>> t2 = ('a')

>>> type(t2)

<type 'str'>

 Another way to create a tuple is the built-in function tuple. With no argument, it creates an

empty tuple:

>>> t = tuple()

>>> print (t)

()

0 ‘a’

1 ‘b’

2 ‘c’

Letters

t

__Main__

Delete_head

15

 If the argument is a sequence (string, list or tuple), the result is a tuple with the elements of

the sequence:

>>> t = tuple('lupins')

>>> print (t)

('l', 'u', 'p', 'i', 'n', 's')

 Because tuple is the name of a built-in function, avoid using it as a variable name.

 Most list operators also work on tuples. The bracket operator indexes an element:

>>> t = ('a', 'b', 'c', 'd', 'e')

>>> print (t[0])

'a'

And the slice operator selects a range of elements.

>>> print t[1:3]

('b', 'c')

But if you try to modify one of the elements of the tuple, you get an error:

>>> t[0] = 'A'

TypeError: object doesn't support item assignment

 can’t modify the elements of a tuple, but you can replace one tuple with another:

>>> t = ('a', 'b', 'c', 'd', 'e')

>>>t = ('A',) + t[1:]

>>> print (t)

('A', 'b', 'c', 'd', 'e')

TUPLE ASSIGNMENT:

 One of the unique features of the python language is the ability to have a tuple on the left

hand side of an assignment statement.

 This allows you to assign more than one variable at a time when the left hand side is a

sequence.

In the below example , we have two element list (which is a sequence) and assign the first and

second elements of the variables x and y in a single statement.

>>> m = (‘have’, ‘fun’)

>>> x,y= m

>>> x

‘have’

>>>y

‘fun’

Python roughly translates the tuple assignment syntax to be the following;

>>>m = (‘have’, ‘fun’)

>>>x = m(0)

>>>y = m(1)

>>>x

‘have’

>>>y

‘fun’

 It is often useful to swap the values of two variables. With conventional assignments, you

have to use a temporary variable. For example, to swap a and b:

>>> temp = a

>>> a = b

>>> b = temp

16

Tuple assignment is more elegant:

>>> a, b = b, a

 The left side is a tuple of variables; the right side is a tuple of expressions. Each value is

assigned to its respective variable. All the expressions on the right side are evaluated before

any of the assignments.

 The number of variables on the left and the number of values on the right have to be the

same:

>>> a, b = 1, 2, 3

ValueError: too many values to unpack.

TUPLES AS RETURN VALUES:

 A function can only return one value, but if the value is a tuple, the effect is the same as

returning multiple values.

 For example, if you want to divide two integers and compute the quotient and remainder, it

is inefficient to compute x/y and then x%y. It is better to compute them both at the same

time.

 The built-in function divmod takes two arguments and returns a tuple of two values, the

quotient and remainder.

You can store the result as a tuple:

>>> t = divmod(7, 3)

>>> print t

(2, 1)

Or use tuple assignment to store the elements separately:

>>> quot, rem = divmod(7, 3)

>>> print quot

2

>>> print rem

1

Example of a function that returns a tuple:

def min_max(t):

return min(t), max(t)

max and min are built-in functions that find the largest and smallest elements of a sequence.

min_max computes both and returns a tuple of two values.

7. What is dictionary in python? List out the operations and methods with example.

 Keys are unique within a dictionary while values may not be.

 The values of a dictionary can be of any type, but the keys must be of an immutable data

type such as strings, numbers, or tuples.

 Dictionary is one of the compound data type like strings, list and tuple. Every element in a

dictionary is the key-value pair.

 An empty dictionary without any items is written with just two curly braces, like this: {}.

Creating a Dictionary:

 A dictionary can be Created by specifying the key and value separated by colon(:) and the

elements are separated by comma (,).The entire set of elements must be enclosed by curly

braces {}.

17

Syntax:

Example:

#Keys-Value can have mixed datatype

Dict1 = {1: “Fruit”, 2: “Vegetabe”,3: “Fish”}

Dict2={“Name”: “Zara”, “Subject”:[“Maths”, “Phy”, “Chemistry”], “Marks”:[198,192,193],

“Avg”:92}

Accessing Elements in Dictionary:

 To access dictionary elements, you can use the familiar square brackets along with the key

to obtain its value.

 Since Dictionary is an unordered Data type. Hence the indexing operator cannot be used to

access the Values.

 To access the data, we have to use key which is associated with the Value.

Example:

>>Dict2={“Name”: “Zara”, “Subject”:[“Maths”, “Phy”, “Chemistry”],

“Marks”:[198,192,193], “Avg”:92}

>>Dict2[“Name”]

>>Dict2[“Avg”]

>>Dict2[“Subject”]

Output:

Zara

20.1

[“Maths”, “Phy”, “Chemistry”]

Deleting Element in Dictionary:

 The element in the dictionary can be deleted by using Del statement.

 The entire dictionary can be deleted by specifying the dictionary variable name.

Syntax:

Example:

>>> dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}

>>> del dict['Name']

>>> dict

{'Age': 7, 'Class': 'First'

#To Create a Dictionary with Key-Value Pairs:

dict={Key 1:Value 1, Key 2:Value 2, Key 3:Value 3, Key 4:Value 4}

#To create an empty Dictionary

Dict={ }

Del (dictionary_Name)<Key-Value>

18

Updating Element in Dictionary:

 In Dictionary the Keys are immutable, however the values are mutable.

 Hence only the Value pair can be Updated

Example

>>> My_dict={'Name':'Nivetha','rank':5,'Average':78.9}

>>> My_dict['rank']=3

>>> My_dict

{'Name': 'abi', 'rank': 3, 'Average': 78.9}

DICTIONARY METHODS:

S.No Method Description

1 dict.clear() Removes all elements of dictionary dict

2 dict.copy() Removes all elements of dictionary dict

3 dict.items() Returns a list of dict's (key, value) tuple pairs

4 dict.keys() Returns list of dictionary dict's keys

5 dict.values() Returns list of dictionary dict's values

6 dict.update(dict2) Adds dictionary dict2's key-values pairs to dict

7 dict.fromkeys()
Create a new dictionary with keys from seq and

values set to value.

8 dict.get(key, default=None) For key, returns value or default if key not in dictionary

9
dict.has_key(key)

Returns true if key in dictionary dict, false otherwise

DICTIONARY OPERATION:

Operation Description Input Function Output

cmp(dict1,

dict2)

Compares

elements of both

dict.

Dict1={“Name”:”zara”,”Age”:14,”sex”:”M

”}

Dict2={“Name”:”zara”,”Age”:14}

Dict3={“Name”:”zara”,”Age”:14}

Cmp(dict1,di

ct2)

Cmp(dict2,d

ict3)

1

0

len(dict)

Gives the total

length of the

dictionary.

Dict1={“Name”:”zara”,”Age”:14,”sex”:”M

”}

Dict2={“Name”:”zara”,”Age”:14}

Len(dict1)

Len(dict2)

2

3

str(dict)

Produces a

printable string

representation of a

dictionary

Dict1={“Name”:”zara”,”Age”:14,”sex”:”M

”}

Str(dict1) {“Name”:

”zara”,”A

ge”:14,

,”sex”:”M

”}

type

(variable)

Returns the type of

the passed variable.

If passed variable

is dictionary, then

it would return a

dictionary type.

Dict1={“Name”:”zara”,”Age”:14,”sex”:”M

”}

Type(dict1) <type

‘dict’>

https://www.tutorialspoint.com/python/dictionary_copy.htm
https://www.tutorialspoint.com/python/dictionary_keys.htm
https://www.tutorialspoint.com/python/dictionary_values.htm
https://www.tutorialspoint.com/python/dictionary_update.htm
https://www.tutorialspoint.com/python/dictionary_fromkeys.htm
https://www.tutorialspoint.com/python/dictionary_get.htm
https://www.tutorialspoint.com/python/dictionary_has_key.htm
https://www.tutorialspoint.com/python/dictionary_cmp.htm
https://www.tutorialspoint.com/python/dictionary_cmp.htm
https://www.tutorialspoint.com/python/dictionary_len.htm
https://www.tutorialspoint.com/python/dictionary_str.htm
https://www.tutorialspoint.com/python/dictionary_type.htm
https://www.tutorialspoint.com/python/dictionary_type.htm

19

Example:

>>>dict1 = {1: “Fruit”, 2: “Vegetabe”,3: “Fish”}

>>>Print(dict1)

>>>{1: “Fruit”, 2: “Vegetabe”,3: “Fish”}

>>> del dict[1]

>>>print(dict1)

>>>{ 2: “Vegetabe”,3: “Fish”}

The len function also works on dictionaries; it returns the number of key:value pairs:
>>> len(dict1)

3

8. Illustrate List Comprehension with suitable examples.

(or)

Explain about the advanced list processing.

 A list Comprehension is a convenient way to produce a list from an iterable (a sequence or

other object that can be iterated over).

 In the simplest form, a list comprehension resembles the header line of a “for Statement” inside

square brackets.

 However,in a list Comprehension, the for statement header is prefixed with an expression and

surrounded by square bracket.

Where:

Expr(x) is an expression,usually but not always containing X.

Iterable is some iterable.An itrable may be a sequence or an unordered collection a list, string or

tuple.

Example 1:

>>> a = [11,22,33,44]

>>> b =[x*2 for x in a]

>>>b

[22,44,66,88]

Example 2:

Given the following list of strings:

Names= [‘alice’, ‘ramesh’, ‘nitya’]

A list of all upper case Names

A List of Capitalized (first letter upper case)

>>>[x.upper() for x in names]

[‘ALICE’, ‘RAMESH’, ‘NITA’]

>>>[x.capitalize() for x in names]

[‘Alice’ , ‘Ramesh’ , ‘Nita’]

Example 3:

>>> fish_tuple=('blowfish','clowfish','catfish','octopus')

>>> fish_list=[fish for fish in fish_tuple if fish != 'octopus']

>>> print(fish_list)

['blowfish', 'clowfish', 'catfish']

Syntax : [Expr(x) for x in iterable]

20

Example 4:

My_list=[]

for x in [20,40,60]:

 for y in [2,4,6]:

 My_list.append(x*y)

print (My_list)

Output: [40, 80, 120, 80, 160, 240, 120, 240, 360]

Note: This code multiplies the items in the first list (x) by the items in the second list (y) over each

iteration

Program For Example 4 using List Comprehension

My_list=[x*y for x in [20,40,60] for y in [2,4,6]]

print(My_list)

Output: [40, 80, 120, 80, 160, 240, 120, 240, 360]

List Comprehensions allows us to transform one list or other sequence into a new list. They Provide

a concise syntax for completing the task and limiting the lines of code.

Example 5:

#To create a simple list

x=[i for i in range (10)]

print (x)

Output: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

ILLUSTRATIVE PROGRAMS:

1. SELECTION SORT:

def selectionSort(alist):

for fill slot in range(len(alist) - 1, 0, -1):

positionOfMax = 0

for location in range(1, fillslot + 1):

if alist[location] >alist[positionOfMax]:

positionOfMax = location

temp = alist[fillslot]

alist[fillslot] = alist[positionOfMax]

alist[positionOfMax] = temp

alist = [54, 26, 93, 17, 77, 31, 44, 55, 20]

selectionSort(alist)

print(alist)

OUTPUT:

[26, 54, 93, 17, 77, 31, 44, 55, 20]

2. INSERTION SORT:

def insertionSort(alist):

for index in range(1,len(alist)):

currentvalue = alist[index]

position = index

while position > 0 and alist[position - 1] >currentvalue:

alist[position] = alist[position - 1]

position = position - 1

alist[position] = currentvalue

alist = [54, 26, 93, 17, 77, 31, 44, 55, 20]

insertionSort(alist)

print(alist)

21

OUTPUT:

[54, 26, 93, 17, 20, 77, 31, 44, 55]

3. MERGE SORT:

def mergeSort(alist):

print("Splitting ",alist)

if len(alist)>1:

mid = len(alist)//2

lefthalf = alist[:mid]

righthalf = alist[mid:]

mergeSort(lefthalf)

mergeSort(righthalf)

i=0

j=0

k=0

while i <len(lefthalf) and j <len(righthalf):

if lefthalf[i] <righthalf[j]:

alist[k]=lefthalf[i]

i=i+1

else:

alist[k]=righthalf[j]

j=j+1

k=k+1

while i <len(lefthalf):

alist[k]=lefthalf[i]

i=i+1

k=k+1

while j <len(righthalf):

alist[k]=righthalf[j]

j=j+1

k=k+1

print("Merging ",alist)

alist = [54,26,93,17,77,31,44,55,20]

mergeSort(alist)

print(alist)

OUTPUT:

Splitting [54, 26, 93, 17, 77, 31, 44, 55, 20]

Splitting [54, 26, 93, 17]

Splitting [54, 26]

Splitting [54]

Merging [54]

Splitting [26]

Merging [26]

Merging [26, 54]

Splitting [93, 17]

Splitting [93]

Merging [93]

Splitting [17]

Merging [17]

Merging [17, 93]

Merging [17, 26, 54, 93]

Splitting [77, 31, 44, 55, 20]

Splitting [77, 31]

Splitting [77]

Merging [77]

22

Splitting [31]

Merging [31]

Merging [31, 77]

Splitting [44, 55, 20]

Splitting [44]

Merging [44]

Splitting [55, 20]

Splitting [55]

Merging [55]

Splitting [20]

Merging [20]

Merging [20, 55]

Merging [20, 44, 55]

Merging [20, 31, 44, 55, 77]

Merging [17, 20, 26, 31, 44, 54, 55, 77, 93]

PROBLEM SOLVING & PYTHON PROGRAMMING

UNIT – I ALGORITHMIC PROBLEM SOLVING

PART-A

1. What is an algorithm?

Algorithm is defined as a step by step procedure for solving any problem. The sequence of steps to be

performed in order to solve a problem by the computer is known as an algorithm.

2. What are the characteristics of an algorithm?

 Algorithm has a finite number of inputs.

 Every instruction should be precise and unambiguous.

 Ensure that the algorithm has proper termination.

 Effectiveness of each step is very important.

 The desired output must be obtained only after the algorithm terminates.

 The algorithm should be in sequence.

3. How can measure the quality of algorithm?

 Time - Lesser the time taken better the quality.

 Memory - Require minimum computer memory.

 Accuracy – Should provide accurate result.

 Sequence - Procedure of an algorithm in a sequential form.

 Generality – fit to all type of inputs.

4. What are the kinds of statement available in algorithm?

 Simple statement

 Compound Statement.

5. What are the representations of algorithm?

 Normal English

 Program

 Flowchart

 Pseudo code

 Decision table

6. What is Flowchart? Why it is required?

Flowchart is a diagrammatic representation (or) graphical representation of an algorithm, often used in

the design phase of programming to work out the logic flow of a program.

7. What is Pseudocode?

Pseudocode came from two words. Pseudo and Code Pseudo means imitation and Code

refer to instructions written in a programming language.

8. What are the rules for drawing a flowchart?

 The standard symbols should only be used.

 The arrowheads in the flowchart represent the direction of flow in the problem.

 The direction of the flow from top to bottom (or) left to right.

 The flow lines should not cross each other.

 Keep flowchart as simple as possible.

 Words in the flowchart should be common and easy to understand.

 More than one flowcharts connected by using connectors.

9. What are the rules for writing Pseudocode?

 Write one statement per line.

 Capitalize initial keywords.

 Ident to show hierarchy.

 End multi line structure.

 Keep statement language independent.

10. List out the basic design structure (or) basic logic structure.

 Sequence structure.

 Selection structure.

 Loop structure.

11. List out the advantages of flowchart.

 Communication.

 Effective analysis.

 Proper documentation.

 Efficient coding.

 Proper Testing and Debugging.

 Efficient Program Maintenance.

12. What are the limitations (or) disadvantages of flowchart?

 Complex Logic

 Alteration or Modification

 No update.

13. List the advantages of Pseudocode.

 Can be done easily on a word processor

 Easily modified

 No symbols are used

 It is simple because it uses English-like statements.

 No specific syntax is used.

14. List out the Disadvantages of Flowchart.

 It’s not visual

 There is no accepted standard.

 Cannot be compiled not executed.

15. Define Functions.

Functions are “self-contained” modules of code that accomplish a specific task. Functions usually “take

in” data, process it, and “return” a result.

16. What are the elements of functions?

 Function declaration

 Function call

 Function definition

17. Define State

 Sate is the result of a test (or) condition.

 If the result is “TRUE”, take a certain course of action and if the result is “FALSE”, take another

course of action.

18. Give the types of programming languages used in computer programming.

 Machine language

 Assembler language

 High level programming language.

19. What are the steps required to solve the problem using algorithm?

 Understanding the problem.

 Ascertaining the capabilities of the computational device.

 Choosing between exact and approximate problem solving.

 Algorithm design techniques.

 Method of specifying an algorithm

 Proving an algorithm’s correctness

 Analysing an algorithm.

 Coding an algorithm.

20. Differentiate Iteration and Recursion.

Iteration Recursion

An iterative function is one that loops to repeat

some part of the code.

A recursive is a function calls itself repeatedly

until some specified condition has been satisfied.

Iterative approach involves four steps,

initialization, condition, execution and updation.

In recursive function, only base condition

(terminate condition) is specified.

Whereas iterative approach makes your code

longer.
Recursion keeps your code short and simple

Iteration is faster.
Recursion is slower than iteration due to

overhead of maintaining stack

http://webrewrite.com/write-program-implement-stack-using-array/

21. List the advantages of Recursive functions.

 Recursion can produce simpler, more natural solutions to a problem.

 It is written with less number of statements.

 Recursive functions are effective.

 It requires few variables which makes program clean.

 It is useful for branching.

22. List the applications of iteration algorithm.

 Factorial of a given number.

 Reverse of a number.

 Fibonacci series.

 Convert the string into lowercase.

 Sum of digits.

 Armstrong number.

23. List the applications of recursion algorithm.

 Factorial of a given number using recursion.

 GCD using recursion

 Towers of Hanoi.

 8 Queen Problem.

24. Differentiate testing and debugging

Testing Debugging

Finding and locating the defect. Fixing the defect.

Done by testing team. Done by development team.

Testing is to find the defects Debugging is to remove the defects

PART – B

1. What is algorithm? Explain characteristics, quality and representation.

Algorithm is defined as a step by step procedure for solving any problem. The

sequence of steps to be performed in order to solve a problem by the computer is known

as an algorithm.

 Characteristics of an algorithm:

 Algorithm has a finite number of inputs.

 Every instruction should be precise and unambiguous.

 Ensure that the algorithm has proper termination.

 Effectiveness of each step is very important.

 The desired output must be obtained only after the algorithm terminates.

 The algorithm should be in sequence.

Quality of algorithm:

 Time - Lesser the time taken better the quality.

 Memory - Require minimum computer memory.

 Accuracy – Should provide accurate result.

 Sequence - Procedure of an algorithm in a sequential form.

 Generality – fit to all type of inputs.

Representation of algorithm:

 Algorithm has a starting point and a final point. Between these two points are the

instructions that solve the problem.

 Algorithms often have steps that repeat or require decisions.

 Algorithm can be expressed in any language from natural languages to

programming languages.

Example:

Algorithm (find the area)

Step 1: start

Step 2: Read the value of radius r

Step 3: calculate area=3.14*r*r

Step 4: Print the area of circle.

Step 5: Stop

2. Explain in detail about building blocks of algorithms.

 Instruction/Statements

 State/Selection

 Control flow

 Functions

(i) Instruction/Statements:

 A statement is the smallest standalone element of a programming language that

expresses some action to be carried out.

 An instruction written in a high-level language that commands the computer to

perform a specified action.

 A program written in a language is formed by a sequence of one or more

statements. A statement may have internal components like expressions.

 Kinds of statements:

i. Simple statements

 Assignment:A=A+2

 Goto:goto next;

 Return: return 10;

ii. Compound statements

Block:begin------------end

Do-loop:do-------------while(i!=10)

For-loop:for(…)----------------

 A statement is executed, with an expression is evaluated.

(ii) State:

 An algorithm is deterministic automation for accomplishing a goal which, given an

initial state, will terminate in a defined end-state.

 When an algorithm is associated with processing information, data is read from an

input source or device, written to an output device, and/or stored for further

processing.

 Stored data is regarded as part of the internal state of the algorithm.

 The state is stored in a data structure.

(iii) Control flow :(Explain the control structures in detail)

 Flow of control (or) control flow is the order function calls, instructions, and

statements are executed or evaluated when a program is running.

 Program control structures are defined as the program statements that specify the

order in which statements are executed.

(i)Sequence Control Structures

 Sequential control structure is used to perform the actions one after another.

 This structure is represented by writing one process after another.

Example

 Algorithm (Add two numbers) Flowchart

Step 1: Start

Step 2: Get the value of a and b.

Step 3: c=a+b

Step 4: print value c.

Step 5: End.

 Pseudocode

 READ a, b

 C=a+b

 WRITE C

(ii)Selection Control Structures

 Selection control structures (or) Decision structures allows the program to make a

choice between two alternate paths whether it is true or false.

 IF…THEN…ELSE or a case structures are the selection structures.

 This logic is used for making decisions.

(a)IF…THEN Structures

 This makes a choice between two processes. If the condition is true it performs

the process. If the condition in false it skips over the process.

 Read a, b

 Print C

 START

 C=a+b

 END

Pseudocode
 IF condition THEN

 Process 1

 ……..

 ……..

 ENDIF

 Flowchart

 YES

 NO

Example:

IF age>=58 THEN

WRITE person gets retirement

ENDIF

(b) IF…THEN…ELSE Structures

 Pseudocode Flowchart

 IF condition THEN

 Process 1

 …..

.

 ELSE

 Process 2

 …..

 …..

 ENDIF

 IF

CONDITION

 PROCESS

Example

IF n%2= = 0 THEN

WRITE n is even

ELSE

WRITE n is odd.

(iii) Case Structure

 This is a multiway selection structures that is used to choose one option from many

options.

 ENDCASE is used to indicate the end of the CASE structure.

 Pseudocode

 CASE TYPE

 Case choice – 1:

 Process 1

 break;

 Case choice – 2:

 Process 2

 ….

 ….

 Case choice-n:

 Process n

 ….

 END CASE

 Flowchart

 Choice 1 Choice 2 Choice 3

Choice

Process 1 Process 2 Process 3

(iv) Functions:

 Functions are self-contained modules of code that accomplish a specific task.

 Functions usually take in data, process it, and return a result. Once a function is written,

it can be used again and again.

 Functions can be from inside of other functions.

 Importance of function(Need of function)

 It allows to divide the larger programs into sub-programs (or) sub-modules.

 It allows to reuse code instead of rewriting it.

 Functions allow to keep variable namespace clean.

 Functions allow to test small parts of our program in isolation from the rest.

 Steps to Writing a function

 Understand the purpose of the function.

 Define the data that comes into the function from the caller.

 Define data variables are needed inside the function to accomplish a goal.

 Decide on the steps that the program will use to accomplish this goal.

 Parts of a function

 Function declaration – int add(int,int);

 Function call – add(a,b);

 Function definition – int add(int x, int y){ z=x+y,return z}

3. Explain in detail about notations.

(i) Pseudocode:

 Pseudocode is a kind of structure English for designing algorithm.

 Pseudo means false and code refers to instructions written in programming

languages.

 Pseudocode cannot be compiled or executed and there are no real formatting or

syntax rules.

 The benefit of pseudocode is that it enables the programmer to concentrate on

algorithms without worrying about all syntactic details of a particular language.

Example:

READ num1,num 2

Result=num1 +num 2

WRITE result

Guidelines for writing pseudocode:

 Only one statement per line: Readability improves if just one action for the

computer is written in one statement.

 Capitalized initial keyword: Keyword like READ,WRITE etc.

Example: IF,ELSE,ENFIF,WHILE,ENDWHILE etc.

 Indent to show hierarchy: In loop, states and iterations the logically

dependent statements must be indent.

Example:

If a>b then

Print a

ELSE

Print b

 End multi-line structures: To improve readability the initial state and end of

the several line must be specified properly.

Example: ENDIF for IF statement.

 Keep statement language independent: The programmer must never use the

syntax of any programming language.

Advantages of pseudocode:

 Can be done easily on a word processor.

 Easily modified.

 Implements structured concepts.

 No special symbols are used.

 No specific syntax is used

Disadvantages of pseudocode:

 It’s not visual.

 Cannot be compiled not executed.

 There is no accepted standard, so it varies widely from company to company.

(ii) Flowchart:

 A flow chart is a diagrammatic representation that illustrates the sequence of operations

to be performed to arrive at the solutions.

 Each step in the process is represented by a different symbol and contains a of the

process step.

 The flowchart symbols are linked together with arrows showing the flow of directions.

S.NO NAME OF SYMBOL SYMBOL DESCRIPTION

1. Terminal symbols

Represent the start and stop

of the program.

2. Input/Output

Denoted either an input or

output operation.

3. Process symbol
 Denotes the process to be

carried out

4. Decision

Represent decision making

and branching

5. Flow lines

 Represent the sequence of

steps and direction of flow

.Used to connect symbols.

6. Connectors

 A connector symbol is

represented by a circle. The

symbol are used to conect

the flowchart

 Guidelines For Preparing Flowchart:

 In drawing a proper flow chart all necessary requirements should be listed out in logical

order.

 The flowchart should be clear and easy to follow.

 Only one flow line should come out from process symboL

 Only one flow line should enter a decision symbol, but two or more flow lines, can leave

the decision symbol

 Only one flow line is used in conjunction with terminal symbol

 If the flow chart becomes complex, it is better to use connector symbol to reduce the

number of flow lines.

Example: Adding two numbers

Advantages of flow chart:

 Communication: Flowcharts are better way of communicating the logic of a system.

 Effective analysis: Problem can be analyzed in effective way.

 Proper documentation: Programs flowcharts serve as a good proper documentation,

which is need for various purposes.

 Efficient coding: The flowchart acts as a guide or blueprint during the system

analysis.

 Proper Testing and debugging: Flowchart helps in debugging process.

Start Stop

Disadvantages of flowcharts:

 Complex logic.

 Alterations and modifications.

 No update.

(iii) Programming Language:

 In computer technology, a set of conventions in which instructions for the machine

are written. There are many languages that allow humans to communicate with

computers.

(a)Machine Language

 The machine language consists of binary numbers that encode instructions for

the computer.

 Every computer has its own machine language.

Example: 10110101-B5

(b)Assembler Language

 An assembler language consists of mnemonics

 There is one mnemonic for each machine instruction of the computer.

 Each assembler instruction is a mnemonic that corresponds to a unique machine

instruction.

 Example:

Start

Add x,y

Sub x,y

…………….

……………..

END

(c)High level language

 A high level programming language allows the programmer to write sentences

in this language which can be easily translated into machine instructions.

 The sentences written in a high level programming language are called

statements.

 Example:

 main()

{

if(x<y)

min=x

}

4. Explain about algorithmic problem solving in detail.

Or

Explain about the steps needed to solve a problem using algorithm in detail.

 Algorithms are procedural solutions to problems.

 These solutions are not answers but specific instructions for getting answers.

 The sequence of steps for designing and analyzing algorithm follows,

1. Understanding the problem.

2. Ascertaining the capabilities of the computational device.

3. Choosing between exact and approximate problem solving.

4. Algorithm design techniques.

5. Method of specifying an algorithm

6. Proving an algorithm’s correctness

7. Analyzing an algorithm.

8. Coding an algorithm.

Fig: Algorithm design and analysis process

Understand the problem

Decide on:

Computational means exact vs

approximate, algorithm design

technique solving

Design an algorithm

Prove correctness

Analyze the algorithm

Code the algorithm

(i) Understanding The Problem:

 The given problem must be understood completely.

 An input to an algorithm specifies an instance of the problem the algorithm solves.

(ii) Ascertaining The Capabilities Of The Computational Device:

 After understanding a problem, ascertain the capabilities of the computational

device.

 Sequential algorithm: Instructions are executed one after another, one operation

at a time.

 Parallel algorithms: The central assumption of the RAM model does not hold for

some newer computers that can execute operations concurrently, (i.e) in parallel.

(iii) Choosing between exact and approximate problem solving:

 Solving the problem exactly is called an exact algorithm.

 Solving it approximately is called an approximation algorithm.

(iv) Algorithm design techniques:

 Algorithm design technique is a general approach to solving problems

algorithmically that is applicable to a variety of problems from different areas of

computing.

 It provides guidance for designing algorithms for new problem.

(v) Methods of specifying an algorithm:

 Pseudo code

 Flowchart

Pseudo code:

 It is a mixture of a natural language and programming language like constructs.

 Pseudo code is usually more precise than programming language.

Flowchart:

 Flow chart is a method of expressing an algorithm by a collection of connected geometric

shapes containing descriptions of the algorithm steps.

(vi) Proving an algorithm correctness:

 After specifying the algorithm, it should be proved for its correctness.

 A common technique for proving correctness is to use mathematical induction.

 Tracing the algorithm correctness for specific inputs can be very worthwhile activity, it

cannot prove the algorithm’s correctness conclusively.

 The notion of correctness for approximation algorithms is less straight forward than it is

for exact algorithms.

(vii) Analysing an algorithm

Three Characteristics of algorithm

 Efficiency

 Simplicity

 Generality.

 Efficiency:

 There are two kinds of algorithm efficiency:

 Time efficiency-Indicating how fast the algorithm runs

 Space efficiency-Indicating how much extra memory it uses.

 Simplicity:

 Simpler algorithms are easier to understand and easier to program.

 The resulting programs usually contain fewer bugs.

 Generality:

 Generality of the problem the algorithm solves.

 The set of input it accepts.

(viii) Coding an Algorithm:

 Coding or programming is the process of translating the algorithm into the syntax of a

given programming language.

 Convert each step in the algorithm into one or more statements in a programming

language

5. Explain about Simple Strategies for Defining An Algorithm (Iteration and recursion).

Iteration and recursion are key computer science techniques used in creating algorithms and

developing software.

ITERATION

 Iterative are programs that follow a path from the starting instruction till the end of the

algorithm.

 Iterative functions are on that loops to repeat some part of the code.

 Using a simple loop to display the numbers from one to ten is iterative process.

Steps to develop an iterative algorithm:

 Define problem: The problem that needs iteration has to be identified and defined.

 Initial conditions: The condition that has to be satisfied, to start the iteration.

 Define loop variants: The variable that controls the number of iteration has to be

defined.

 Define step: The steps that are to be repeated must be defined.

 Define measure of progress: The loop invariant that have been defined would be

changed when algorithm progress.

 Define Exit condition: When the iteration would be stopped has to be identified.

 Make progress: Move forward after executing an instruction.

 Maintain Loop variants: In order to repeat the steps the loop invariant must be

maintained in range.

 Ending: When the iteration has stop.

Example algorithm for iteration process:

1.Factorial of a given number.

2.Reverse of a number.

3.Sum of digits.

RECURSION:

 Recursive function is one that calls itself again to repeat the code.

 Recursion is a problem, solving approach by which a function calls itself repeatedly until

some specified condition has been satisfied.

 Recursion splits a problem into one or more simpler versions of itself.

 In a recursive algorithm the algorithm calls itself with smaller input values.

 The recursive programs require more memory and computation compared with iterative

algorithms.

Example: factorial of a given number.

n!=n x (n-1)!

4!=4 x(4-1)!

 =4 x (3!)

 =4 x 3 x 2 x1

 =24

Advantages of recursive functions:

 Recursion can produce simpler, more natural solutions to a problem.

 It is written with less number of statements.

 Recursive functions are effective where the terms are generated successively to compute

a value.

 It requires few variables.

 It is useful for branching process.

Example algorithm for recursion:

1. GCD using recursion.

2. Factorial given number using recursion.

6. ILLUSTRATIVE PROBLEMS:

1. To find a minimum in a list:

Problem statement: Find in a minimum in a list.

Problem description:

 Minimum in a list of elements can be achieved in different ways.

 One way is to sort the list of element in ascending order and get the first element as

minimum.

 Another method is to compare each element with other.

 Assume the first element as minimum element and start comparing with the next

element.

 If the next element is smaller than assume the second the minimum and keep

repeating the procedure till the last element.

Algorithm:

Step1: Get the list of elements.

Step2: Assume first element as Min.

Step 3: Compare Min with next element.

Step 4: If MIN is greater than next element; Set MIN=next element

Step 5: Repeat step 3 and 4 till the last element.

Step 6: Display MIN as the minimum element of the list.

.

1

UNIT-III

CONTROL FLOW, FUNCTIONS

SYLLABUS:

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained

conditional(if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful

functions: return values,parameters, local and global scope, function composition,

recursion; Strings: string slices,immutability, string functions and methods, string

module; Lists as arrays. Illustrative programs:square root, gcd, exponentiation, sum an

array of numbers, linear search, binary search.

TWO MARKS

1. Define Boolean values

The Boolean data type have 2 values (usually denoted by True or False), When

converting a Boolean to an integer, the integer value is always 0 or 1, but when

converting an integer to a Boolean, the Boolean value is true for all integers except 0.

2. List out the Boolean operators.

➢ Or operator.

➢ And operator.

➢ Not operator.

➢

3. Define conditional statements.

➢ The execution of the program acts according the conditions. This concept is known as

Conditional statements or Branching Statements.

➢ Conditional Statements are used to perform different computation or action depending

on whether a condition evaluates to TRUE or FALSE.

1. If Statement

2. If...else Statement

3. If..elif..else Statement

4. Nested if...elif..Else Statement.

4. Write the syntax of if and if-else statements.

➢ Condition if:The boolean expression after the if statement is called the condition. If it

is true, then the indentedstatement gets executed.

Syntax:

if (Condition):

 True Statement Block

➢ Alternative(IF....Else Statement):A second form of the if statement is alternative

execution, in which there are two possibilities and the condition determines which one

gets executed.

2

Syntax:

if (Condition):

 True Statement Block

 else:

 False Statement Block

5. What is the purpose of iteration? Give example.

➢ A loop statement allows us to execute a statement or group of statements

multiple times.

➢ Repeated execution of a set of statements is called iteration.

Example:

Count=0

While(count<9):

Print’the count is:’,count

Count=count+1

6. Illustrate the flow chart of if-elif- else statements.

7. What are unconditional looping statements?

➢ Loop that needs to be executed compulsorily without any condition is called an

unconditional loop.

➢ The loop will be executed in theprogram without any conditional checks.

Example:

➢ Break statement.

➢ Continue statement.

➢ Pass statement.

8. Explain about break statement with an example.

➢ It terminates the current loop and resumes execution at the next statement.

➢ The most common use for break is when some external condition is triggered

requiring a hasty exit from a loop.

False

True

True

False

Body of Else

Body of elif –

Statement Block 2

Test

Condition 1

elif Test

Condition 2

Body of if –Statement

Block 1

3

➢ The break statement can be used in both while and for loops.

Syntax:

 Break

Example :

forletter in 'Python':

if (letter == 'h'):

break

print(“Current Letter :”, letter)

Output:

Current Letter : P

Current Letter : y

Current Letter : t

9. Discuss about continue and pass statements.

Continue Statement:

• It returns the control to the beginning of the while loop.

• The continue statementrejects all the remaining statements in the current

iteration of the loop and movesthe control back to the top of the loop.

• The continue statement can be used in both while and for loops.

Syntax:

Continue

Pass Statement:

• It is used when a statement is required syntactically but you do not want any

command or code to execute.

• The pass statement is a null operation; nothing happens when it executes.

Syntax:

Pass

10. What are function and fruitful function?

➢ Function: It is a block of statement that will execute for a specific task.

➢ Fruitful function:Functions that return values are called fruitful function.

➢ Example: The square function will take one number as parameter and

return the result of squaring that number

11. Define parameter. List out it types.

➢ Parameter is the input data that is sent from one function to another.

➢ Parameter is of two types,

✓ Actual parameter.

✓ Formal parameter.

Fruitful functions
Input the value

Return the result

4

Actual parameter:

➢ Parameter is defined in the function call.

Formal parameter:
➢ Parameter is defined as part of function definition.

➢ Actual parameter value is received by formal parameter

12. Classify global variable with local variable.

➢ A variable in the program can be either local variable or global variable.

➢ A global variable is a variable that is declared in the main program while a

local variable is a variable declared within the function.

Example:

S=10 # s is the global variable

def f1()

S=55# s is the local variable

Print s

Output:

 55

13. Describe various methods used on a string. (Any Four)

➢ is digit()-returns true if string contains only digits and false otherwise.

➢ islower()-returns true if string has at least 1 cased character and all cased characters are

in lowercase and false otherwise.

➢ isnumeric()-returns true id a Unicode string contains only numeric characters and false

otherwise.

➢ isupper()-returns true if string has at least one cased character and all cased characters

are in uppercase and false otherwise.

14. What are the advantages and disadvantages of recursion function?

Advantages:

➢ Reduces time complexity.

➢ Performs better in solving problems based on tree structures.

Disadvantages:

➢ It is usually slower due to the overhead of maintain stack.

➢ It usually uses more memory of the stack.

15. What is string?Giveexample.

➢ A string is a sequence of characters.(i.e) it can be a letter , a number, or a

backslash.

➢ Python strings are immutable, which means they cannot be changed after they

are created.

Example:

Var1='hello world!

5

16. How will you slice the given string in python?

A segment of a string is called a slice. Selecting a slice is similar to selecting a

character:

Example

>>> s = 'Monty Python'

>>> print s[0:5]

Monty

>>> print s[6:13]

Python

17. What will be the output of print str[2:5] if str=’helloworld!’?

Str=”HELLOWORLD!”

Str[2:5]

O/P = LLO

18. List out the applications of arrays.

Applications - Arrays are used to implement in data structures, such as lists, heaps, hash

tables, deques, queues, stacks and strings.

19. Write a program to iterate a range using continue statement.

for letter in 'Python':

if (letter == 'h'):

continue

print(“Current Letter :”, letter)

Output:

Current Letter : P

Current Letter : y

Current Letter : t

Current Letter : o

Current Letter : n

20. Define array with an example.

 An array is a collection of data that holds fixed number of values of same type.

Forexample: if you want to store marks of 100 students, you can create an array for it.

21.Differentiate for loop and while loop. ?

H E L L O W O R L D !

0 1 2 3 4 5 6 7 8 9 10

For Loop While Loop

1.Executes the sequence of statements multiple

times and abbreviates the code that manages

the loop

2.Eg. for i in ‘123’:

 Print (“Welcome”,i, “Times”)

Output:

Welcome 1 Times

Welcome 2 Times

Welcome 3 Times

1.Repeats a statement until a give condition

is TRUE. It test the While condition before

executing the loop body

2.Eg.Counter = 0

While (counter < 3):

 Print(‘countis:’,counter)

 Counter=Counter+1

Output:

Count is: 0

Count is: 1

Count is: 2

https://en.wikipedia.org/wiki/Array_data_structure#Applications

6

16 MARKS

1. Boolean Value and operators(8m)

➢ The Boolean data type have 2 values (usually denoted by True or False), When

converting a Boolean to an integer, the integer value is always 0 or 1, but when

converting an integer to a Boolean, the Boolean value is true for all integers except 0.

Boolean and logical operators:

Boolean values respond to logical operators (AND / OR)

True AND False = False

True AND True = True

False AND True= False

False OR True= True

False Or False= False

➢ A boolean expression is an expression that is either true or false.

BOOLEAN OPERATORS(and,or,not)

These are the Boolean operation, ordered by ascending priority:

Operation Result

 X or Y If X is false then y, else X

X and Y If X is false, then x else Y

Not X If x is false,then true else False

The following examples usethe operator ==, which compares two operands and produces True

if they are equal and False

Otherwise:

>>> 5 == 5

True

>>> 5 == 6

False

True and False are special values that belong to the type bool; they are not strings:

>>>type (True)

<type 'bool'>

>>>type(False)

<type 'bool'>

Boolean and Comparison operators:

The == operator is one of the comparison operators; the others are:

x!= y # x is not equal to y

7

x > y # x is greater than y

x < y # x is less than y

x >= y # x is greater than or equal to y

x <= y # x is less than or equal to y

Although these operations are probably familiar to you, the Python symbols are different from

themathematical symbols. A common error is to use a single equal sign (=) instead of a double

equalsign (==). Remember that = is an assignment operator and == is a comparison operator.

2. Explain the branching statements in python with relevant syntax and

example.(16m)

• Control Flow is the order in which individual Statements, instructions are executed

or evaluated.

• Flow is just a way or sequence of program Execution.

• Every Statement of a program is executed one by one. Python provides various tools

for flow Control.

• Some of them are if, if..else, if..elif..else, Nestedif..elif..else, For, While, Nested, Break,

Continue etc

Conditional Statements:

• The execution of the program acts according the conditions. This concept is known as

Conditional statements or Branching Statements.

• Conditional Statements are used to perform different computation or action depending

on whether a condition evaluates to TRUE or FALSE.

,

1. If Statement

2. If...else Statement

3. If..elif..else Statement

4. Nested if...elif..Else Statement

1. Conditional (If Statement):

➢ The Boolean expression after the if statement is called the condition. If it is true, then

the indentedstatement gets executed.

FLOW CONTROL

Conditional Statements Looping Control Structure

• If

• If...else

• If..elif..else

• Nested If..elif..else

• While Loop

• For Loop

• Nested loop

• Break

• Continue

• Pass

8

➢ If the text condition is FALSE, the Statements are not executed.

If statements have the same structure as function definitions: a header followed by an

indented block. Statements like this are called compound statements.

Syntax:

if (Condition):

 True Statement Block

Flowchart for if statement:

Example 1:

 A=500

 B=200

 If (A>B):

 Print (“A is greater than B”)

Output:

 A is Greater than B

Explanation:

 A>B is a test condition, namely 500>200, if it returns TRUE, it will execute the code

“print ()”, if it returns FALSE, it will not execute the code “ print()”.

2.Alternative(IF....Else Statement):

➢ A second form of the if statement is alternative execution, in which there are two

possibilities and the condition determines which one gets executed.

Syntax:

if (Condition):

 True Statement Block

 else:

 False Statement Block

Flowchart for if..else statement

FALSE

TRUE

Test

Condition

True Condition

Statement (Body of If)

Test

Condition

True Condition

Statement

False Condition

Statement

If Condition is false If Condition is true

9

Example 1:

X=4

if x%2 == 0:

print 'x is even'

else:

print 'x is odd'

Output:

X is even

Explanation:

➢ If the remainder when x is divided by 2 is 0, x is even

➢ If the condition is false, the second set of statements is executed.(i.e) x is odd

3.Chained condidtional (If...elif...else Statement):

➢ If there are more than two possibilities and need more than two branches.

➢ One way to express a computation like that is a chained conditional.

Syntax:

if (Condition 1):

 Statement Block1

 elif(Condition 2):

Statement Block 2

elif(Condition 3):

Statement Block 3

 else:

 Statement(s)

➢ elif is an abbreviation of “else if.”

➢ There is no limit onthe number of elif statements.

Flowchart for if..elif...else statement:

False

True

True

False

Body of Else

Body of elif –

Statement Block 2

Test

Condition 1

Elif Test

Condition 2

Body of if –Statement

Block 1

10

Example:

X=10

Y=5

if x < y:

print 'x is less than y'

elif x > y:

print 'x is greater than y'

else:

print 'x and y are equal'

Output:

x is greater than y

4.Nested if...elif..Else Statement:

• If..elif..else statement can be used inside another if..elif..else statement.This is

called nesting. One condition can also be nested within another.

Syntax:

 if (Condition 1):

 if (Condition 2):

 True Statement 2

 else:

 False Statement 2

 else:

 False statement 1

Flowchart for Nested if..elif...else statement:

Example:

X=10

Y=5

if x == y:

print 'x and y are equal'

else:

 True

False True

False
Test

Condition 1

False Statement 2

TrueStatement 2

Condition 2

False Statement1

11

if x < y:

print 'x is less than y'

else:

print 'x is greater than y'

OUTPUT:

X is greater than y.

3. Explain the iteration in python with relevant syntax and

example.(16m)

• Computers often do repetitive task. There are situation when programmers used to

execute a block of code several number of times.

• Repeated execution of a set of statements is called Iteration/Looping.

Python Programming Language provide following types of Iterative Statements.

1. For Loop

2. While Loop

3. Nested Loop

Loop Type Description

For Loop Executes the sequence of statements multiple times and abbreviates the code that

manages the loop

While Loop Repeats a statement until a give condition is TRUE.It test the While condition

before executing the loop body

Nested Loop You can use one or more loop inside any other While or For Loop

1. For Loop:

• It executes the sequence of statements multiple times and abbreviates the code that

manages the loop.

• The for – loop repeats a given block of codes by specified number of times.

Syntax:

For <variable> in <sequence>:

<statement 1>

<statement 2>

<statement 3>

.

.

.

<statement n>

Flowchart:

Test

EXPRESION

Body of the Loop

For each item

in sequence

FALSE

TRUE

Exit Loop

12

Example 1 – For Loop

for i in ‘123’:

 Print (“Welcome”,i, “Times”)

Output:

Welcome 1 Times

Welcome 2 Times

Welcome 3 Times

Example 2 – For Loop

Pets_List=[‘Parrot’, ‘Rabbit’, ‘Pigeon’,

‘Dog’]

For mypets in Pets_List:

Print(mypets)

Output:

Parrot

Rabbit

Pigeon

Dog

Example 3 – For Loop

Message = “PROGRAM”

For i in message:

 Print(i)

Output:

P

R

O

G

R

A

M

Example 4 – For Loop

Language= (“c”, “c++”, “Java”, “Python”)

for i in Lanuage:

 print(i)

Output:

C

C++

Java

Python

2. While Loop:

• While loop is used, when we need to repeatedly execute a statement or group of

statements until the condition is true.

• It tests the condition before executing the loop body so this technique is known as Entry

Controlled Loop.

Syntax:

 While expression:

 Statement(s)

• Here, statements may be a single statement or a block of statements.

• The condition may be any expression, the loop iterates while the condition is true, when

the condition becomes false, program control passes to the line immediately following

the loop.

Flowchart:

Test

Condition

Body of the Loop

Enter While

Loop

False

True

Exit Loop

13

Example 1 – While Loop

#Program to print the number from 0 to 4

Counter = 0

While (counter < 4):

 Print(‘countis:’,counter)

 Counter=Counter+1

Print(“Exit the loop”)

Output:

Count is: 0

Count is: 1

Count is: 2

Count is: 3

Exit the Loop

Example 2 – While Loop

#Program to print the number from 0 to 5

a=0

While (a<5):

 a=a+1

 Print (a)

Output:

0

1

2

3

4

3. Nested Loop:

• Nesting is defined as placing of one loop inside the body of another loop.

• It can use one or more loop inside any another while, for..loopetc

Syntax:

For <variable> in <sequence>:

 For<variable> in <sequence>:

 Statement(s)

Statement(s)

4. STATE:
➢ An algorithm is deterministic automation for accomplishing a goal which, given an

initial state, will terminate in a defined end-state.

➢ When an algorithm is associated with processing information, data is read from an input

source or device, written to an output device, and/or stored for further processing.

➢ Stored data is regarded as part of the internal state of the algorithm.

➢ The state is stored in a data structure.

5. Explain about unconditional looping statements with relevant example.

• It controls the flow of program execution to get desired result.

Python supports following three control statements:

1. Break.

2. Continue.

3. Pass.

Control Statements Explanation

Break It terminates the loop statement and transfers execution to the

statement immediately following loop.

Continue Causes the loop to skip the remainder of its body and immediately

retest its condition prior to reiterating

Pass The pass statement in python is used when a statement is required

syntactically but we do not want any command or code to execute.

14

Break Statement:

• It terminates the current loop and resumes execution at the next statement.

• The most common use for break is when some external condition is triggered requiring

a hasty exit from a loop.

• The break statement can be used in both while and for loops.

• If you are using nested loops, the break statement stops the execution of the

innermost loop and start executing the next line of code after the block.

Syntax:

 Break

Flow Diagram for Break Statement:

Example 1:

for letter in 'Python':

if (letter == 'h'):

break

print(“Current Letter :”, letter)

Output:

Current Letter : P

Current Letter : y

Current Letter : t

Example 2:

var = 10

while var> 0:

print (“Current variable value :”, var)

var = var -1

if (var == 5):

break

print("Good bye!")

Output:

Current variable value : 9

Current variable value : 8

Current variable value : 7

Current variable value : 6

Good bye!

Condition
Break

Condition Code

If condition is false

If Condition

is True

15

2.Continue Statement:
• It returns the control to the beginning of the while loop.

• The continue statementrejects all the remaining statements in the current iteration

of the loop and movesthe control back to the top of the loop.

• The continue statement can be used in both while and for loops.

Syntax:

Continue

Flow Diagram for Break Statement:

Example 1:

for letter in 'Python':

if (letter == 'h'):

continue

print(“Current Letter :”, letter)

Output:

Current Letter : P

Current Letter : y

Current Letter : t

Current Letter : o

Current Letter : n

Example 2:

var = 10

while (var> 0):

var = var -1

print (“Current variable value :”, var)

if (var == 5):

Coninue

Print("Good bye!")

Output:

Current variable value : 9

Current variable value : 8

Current variable value : 7

Current variable value : 6

Current variable value : 4

Current variable value : 3

Current variable value : 2

Current variable value : 1

Current variable value : 0

Good bye!

Condition
Continue

Condition Code

If condition is false

If Condition

is True

16

3.Pass Statement:

• It is used when a statement is required syntactically but you do not want any

command or code to execute.

• The pass statement is a null operation; nothing happens when it executes.

• The pass is also useful in places where your code will eventually go, but has not been

written yet (e.g., in stubs for example)

Syntax:

Pass

Example 1:

forletter in 'Python':

if (letter == 'h'):

Pass

Print(“This is pass block”)

print(“Current Letter :”, letter)

print(“Good bye”)

Output:

Current Letter : P

Current Letter : y

Current Letter : t

This is pass block

Current Letter : h

Current Letter : o

Current Letter : n

Good Bye

6. Briefly explain about fruitful functions with example.

➢ Functions that return values are called fruitful function.

➢ Example: The square function will take one number as parameter and return the result

of squaring that number.

RETURN VALUES:

➢ The Built-in functions such as the math functions, POW, etc. produce results.

➢ Calling the function generates a value, which we usually assign to a variable or use as

part of an expression.

➢ The first example is area, which returns the area of a circle with the given radius:

def area(radius):

temp = math.pi * radius**2

return temp

Fruitful functions
Input the value

Return the result

17

➢ We have seen the return statement before, but in a fruitful function the return statement

includes an expression.

def area(radius):

returnmath.pi * radius**2

PARAMETERS:

A function in python,

➢ Takes input data, called parameters or arguments.

➢ Perform computation

➢ Returns the result.

Def func(param1,param2);

#computations

Return result

➢ Parameter is the input data that is sent from one function to another.

➢ Parameter is of two types,

✓ Actual parameter.

✓ Formal parameter.

Actual parameter:

➢ Parameter is defined in the function call.

Formal parameter:
➢ Parameter is defined as part of function definition.

➢ Actual parameter value is received by formal parameter.

Example:

Function With Actual And Formal Parameters

def cube(x)

return x*x*x

a=input(“enter the number:”)

b=cube(a)

Print(“cube of the given number:”,b)

Output:

Enter the number:2

Cube of the given number:8

Parameter passing techniques:

➢ Call by value

➢ Call by reference

Call by value:

➢ A copy of actual parameter is passed to formal arguments and any changes made to

the formal arguments have no effect on the actual arguments.

18

Call by reference:

➢ A copy of actual parameter is passed to formal arguments and any changes made to the

formal arguments will affect the actual arguments.

SCOPE OF THE VARIABLE:

➢ A variable in the program can be either local variable or global variable.

➢ A global variable is a variable that is declared in the main program while a local

variable is a variable declared within the function.

Example:

S=10 # s is the global variable

def f1()

S=55# s is the local variable

Print s

Output:

 55

COMPOSITION:

➢ When a function is called from within another function, it is called composition.

➢ A function that takes two points, the center of the circle and a point onthe

perimeter, and computes the area of the circle.

➢ Assume that the center point is stored in the variables xc and yc, and the perimeter

point is in xp and yp.

➢ The first step is to find the radius of the circle, which is the distance between the two

points.

radius = distance(xc, yc, xp, yp)

result = area(radius)

Encapsulating these steps in a function, we get:

defcircle_area(xc, yc, xp, yp):

radius = distance(xc, yc, xp, yp)

result = area(radius)

return result

we can make it more concise by composing the function calls:

defcircle_area(xc, yc, xp, yp):

return area(distance(xc, yc, xp, yp))

RECURSION:

➢ A function is recursive if it calls itself and has a termination condition.

➢ Termination condition stops the function from calling itself.

Example:

def factorial(n):

If n==0:

Return 1

else:

recurse =factorial(n-1)

Result =n* recurse

Return result

19

7. Explain in detail about strings with examples.

➢ A string is a sequence of characters.(i.e) it can be a letter , a number, or a backslash.

➢ Python strings are immutable, which means they cannot be changed after they are

created.

STRING SLICES:

➢ A segment of a string is called a slice. Selecting a slice is similar to selecting a

character.

Example:

>>> s = 'MontyPython'

>>> print s[0:5]

Monty

>>> print s[6:13]

Python

➢ The operator [n:m] returns the part of the string from the “n-eth” character to the “m-

eth” character,including the first but excluding the last.

➢ If you omit the first index (before the colon), the slice starts at the beginning of the

string. If youomit the second index, the slice goes to the end of the string.

Example:

>>> fruit = 'banana'

>>> fruit[:3]

'ban'

>>> fruit[3:]

'ana'

➢ If the first indexes is greater than or equal to the second the result is an empty string,

represented by two quotation marks.

Example:

>>> fruit = 'banana'

>>> fruit[3:3]

➢ An empty string contains no characters and has length 0, but other than that, it is the

same as anyother string.

20

STRINGS ARE IMMUTABLE:

➢ It is tempting to use the [] operator on the left side of an assignment, with the intention

of changing a character in a string.

 For example:

>>> greeting = 'Hello, world!'

>>>greeting[0] = 'J'

TypeError: object does not support item assignment.

➢ The “object” in this case is the string and the “item” is the character you tried to assign.

➢ An object is the same thing as a value, but we will refine that definition later. An item is

one of the values in a sequence.

➢ The reason for the error is that strings are immutable, which means you can’t change an

existing string.

➢ The best is to create a new string that is a variation on the original:

>>> greeting = 'Hello, world!'

>>>new_greeting = 'J' + greeting[1:]

>>> print new_greeting

Output:

Jello, world!

➢ This example concatenates a new first letter onto a slice of greeting. It has no effect on

the original string.

STRING FUNCTIONS AND METHODS:

➢ A method is similar to a function—it takes arguments and returns a value—but the

syntax is different.

➢ For example, the method upper takes a string and returns a new string with all

uppercase letters:

➢ Instead of the function syntax upper(word), it uses the method syntax word.upper().

>>>word = 'banana'

>>>new_word = word.upper()

>>> print new_word

BANANA

➢ This form of dot notation specifies the name of the method, upper, and the name of the

string to apply the method to, word. The empty parentheses indicate that this method

takes no argument.

➢ A method call is called an invocation; in this case, we would say that we are invoking

upper on the word.

>>>word = 'banana'

>>>index = word.find('a')

>>>print index

 1

➢ The find method is more general than our function; it can find substrings, not just

characters:

>>>word.find('na')

21

 2

➢ It can take as a second argument the index where it should start:

>>>word.find('na', 3)

 4

➢ And as a third argument the index where it should stop:

>>>name = 'bob'

>>>name.find('b', 1, 2)

 -1

METHODS:

METHODS DESCRIPTION

Capitalize() Capitalizes first for letter of string

is digit() returns true if string contains only digits and false otherwise.

islower() returns true if string has at least 1 cased character and all cased

characters are in lowercase and false otherwise.

isnumeric()- returns true id a Unicode string contains only numeric characters and

false otherwise

isupper() returns true if string has at least one cased character and all cased

characters are in uppercase and false otherwise.

STRING MODULE

• The string module provides tools to manipulate strings. Some methods available in the

standard data structure are not available in the string module (e.g. isalpha).

Example:

>>>import string

>>>string.digits

‘0123456789’

>>>string.ascii_letters

‘abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’

>>>string.ascii_lowercase

‘abcdefghijklmnopqrstuvwxyz’

>>>string.ascii_uppercase

‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’

>>>string.hexdigits

‘0123456789abcdefABCDEF’

>>>string.octdigits

‘01234567’

>>>string.punctuation

‘!”@#$%^&*()”:><{}[]’

>>>string.whitespace

‘\t\n\r\x0b\x0c’

>>>string.Capwords(“python”)

‘PYTHON’

22

8.Why we need list instead of array in Python?Explain in detail

about lists with example?

LIST AS ARRAY

➢ A list in Python is just an ordered collection of items which can be of any type.

➢ By comparison an array is an ordered collection of items of a single type - so in

principle a list is more flexible than an array but it is this flexibility that makes things

slightly harder when you want to work with a regular structure.

➢ A list is also a dynamic mutable type and this means you can add and delete elements

from the list at any time.

➢ To define a list you simply write a comma separated list of items in square brackets,

 myList=[1,2,3,4,5,6]

➢ This looks like an array because you can use "slicing" notation to pick out an individual

element - indexes start from 0.

For example print myList[2]

➢ It will display the third element, i.e. the value 3 in this case. Similarly to change the

third element you can assign directly to it:

myList[2]=100

➢ The slicing notation looks like array indexing but it is a lot more flexible.

 For example myList[2:5]

➢ It is a sublist from the third element to the fifth i.e. from myList[2] to myList[4].

➢ The final element specified i.e. [5] is not included in the slice.

➢ Also notice that you can leave out either of the start and end indexes and they will be

assumed to have their maximum possible value.

For example myList[5:] is the list from List[5] to the end of the list andmyList[:5]

is the list up to and not including myList[5] andmyList[:] is the entire list.

➢ List slicing is more or less the same as string slicing except that you can modify a slice.

For example:

myList[0:2]=[0,1] has the same effect as

myList[0]=0

myList[1]=1

➢ List slicing is more or less the same as string slicing except that it can modify a slice.

Basic array operations

➢ For example, to find the maximum value (forgetting for a moment that there is a built-

in max function) you could use:

m=0

for e in myList:

if m<e:

m=e

23

➢ This uses the for..in construct to scan through each item in the list. This is a very useful

way to access the elements of an array but it isn't the one that most programmers will be

familiar with. In most cases arrays are accessed by index and you can do this in Python:

m=0

for i in range(len(myList)):

 if m<myList[i]:

 m=myList[i]

➢ Notice that we are now using range to generate the sequence 0, 1, and so on up to the

length of myList.

➢ You have to admit that there is a lot to be said for the simplicity of the non-index

version of the for loop but in many cases the index of the entry is needed. There is the

option of using the index method to discover the index of an element but this has its

problems.

ILLUSTRATIVE PROGRAMS:

1. Find the square root of number.

n = int(input("Enter a number"))

howmany = int(input("Enter another number"))

approx = 0.5 * n

for i in range(howmany):

betterapprox = 0.5 *(approx + n/approx)

approx = betterapprox

print("The square root of a number is:", betterapprox)

OUTPUT:

Enter a number25

Enter another number36

The square root of a number is: 5.0

2. GCD of a given number.

d1 = int(input("Enter a number:"))

d2 = int(input("Enter another number"))

rem = d1 % d2

while rem != 0 :

 d1 = d2

 d2 = rem

rem=d1 % d2

print ("gcd of given numbers is :", d2)

OUTPUT:

Enter a number:2

Enter another number4

gcd of given numbers is : 2

24

3. Exponentiation

n = input ("Enter a number : ")

n = int(n)

e = input ("Enter an exponent : ")

e = int(e)

r = n

for i in range (1,e):

r = n * r

print(r)

OUTPUT:

Enter a number : 2

Enter an exponent : 2

4

4. Sum an array of elements.

a = []

n = int(input("Enter number of elements:"))

for i in range(1, n+1):

b = int(input("Enter element:"))

a.append(b)

a.sort()

print("Largest element is:",a[n-1])

OUTPUT:

Enter number of elements:5

Enter element:5

Enter element:54

Enter element:24

Enter element:58

Enter element:1

Largest element is: 58

5. Linear search

list = [4,1,2,5,3] #Set up array

search = int(input("Enter search number")) # Ask for a number

for i in range(0,len(list)): # Repeat for each item in list

if search==list[i]: #if item at position i is search time

print(str(search)+"found at position " + str(i)) #Report found

OUTPUT:

Enter search number 4

4 found at position 0

6. Binary search

defbinary_search(item_list,item):

first = 0

25

last = len(item_list)-1

found = False

while(first<=last and not found):

mid = (first + last)//2

ifitem_list[mid] == item :

found = True

else:

if item <item_list[mid]:

last = mid - 1

else:

first = mid + 1

return found

print(binary_search([1,2,3,5,8], 6))

print(binary_search([1,2,3,5,8], 5))

OUTPUT:

False

True

6

PART-B

1. Explain the concepts Python interpreter and interactive mode in detail.

 A Python is a high-level programming language. Python is an easy to learn,

powerful programming language.

 Python is programming language as well as scripting language. Python is also

called as Interpreted language.

Advantages of High-level language:

 It is much easier to program in a high-level language

 Programs written in a high-level language take less time to write

 They are shorter and easier to read

 High-level languages are portable, meaning that they can run on different

kinds of computers with few or no modifications.

Two kinds of programs process high-level languages into low-level languages:

interpreters and Compilers.

Interpreter:

 Translates program one statement at a time.

 It takes less amount of time to analyze the source code but the overall

execution time is slower.

 No intermediate object code is generated, hence are memory efficient.

 Continues translating the program until the first error is met, in which case it

stops. Hence debugging is easy.

 Programming language like Python, Ruby use interpreters.

Compiler:

 Scans the entire program and translates it as a whole into machine code.

 It takes large amount of time to analyze the source code but the overall

execution time is comparatively faster.

 Generates intermediate object code which further requires linking, hence

requires more memory.

 It generates the error message only after scanning the whole program. Hence

debugging is comparatively hard.

 Programming language like C, C++ uses compilers.

7

There are two ways to use the interpreter: interactive mode and script mode.

Interactive mode:

 Working in interactive mode is convenient for testing small pieces of code

because you can type and execute them immediately.

 Interactive mode is a command line shell which gives immediate feedback for

each statement, while running previously fed statements in active memory.

 As new lines are fed into the interpreter, the fed program is evaluated both in

part and in whole.

 Interactive mode is a good way to play around and try variations on syntax.

Example:

 >>> 1 + 1

 Output:2

 >>> print (5*7)

 Output: 35

 >>>, is the prompt the interpreter uses to indicate that it is ready.

Script mode:

 Store code in a file and use the interpreter to execute the contents of the file,

which is called a script.

 Python scripts have names that end with .py.

 To execute the script, you have to tell the interpreter the name of the file.

 Save code as a script which can modify and execute it in the future.

 In script mode, however, Python doesn't automatically display results.

 Explicitly from the command line. In this case running Python file and

providing the name of the script as an argument.

 EX:

Sample.py

a=10

b=20

print (a+b)

 Output : 3

8

Program:

A computer program is a collection of instructions that performs a

specific task when executed by a computer. A computer requires programs to

function and typically executes the program's instructions in a central processing

unit. A computer program is usually written by a computer programmer in a

high-level programming language.

Elements of program:

 input: Get data from the keyboard, a file, or some other device.

 output: Display data on the screen or send data to a file or other device.

 math: Perform basic mathematical operations like addition and

multiplication.

 conditional execution: Check for certain conditions and execute the

appropriate sequence of statements.

 repetition: Perform some action repeatedly, usually with some variation.

Debugging:

 Programming errors are called bugs and the process of tracking them down is

called debugging.

 Three kinds of errors can occur in a program: syntax errors, runtime errors,

and semantic errors.

Syntax Errors:

 Python can only execute a program if the syntax is correct; otherwise, the

interpreter displays an error message.

 Syntax refers to the structure of a program and the rules about that structure.

Runtime Errors:

 The second type of error is a runtime error, so called because the error does

not appear until after the program has started running.

 These errors are also called exceptions because they usually indicate that

something exceptional (and bad) has happened.

 Runtime errors are rare in the simple programs.

Semantic errors:

 The third type of error is the semantic error. If there is a semantic error in

your program, it will run successfully in the sense that the computer will not generate

any error messages, but it will not do the right thing.

Scope of Python:

9

• Web Development, Internet scripting, Test scripts, Embedded Scripting

• Graphical user Interface [GUI],

• Game Programming, Distributed Programming

2. Explain in detail about values and data types available in python with examples.

 A Value is one of the fundamental things, like a letter or a number that a program

manipulates. They are grouped into different data types.

 Data type is a set of values and allowable operations on those values. Data types

allow programming languages to organize different kinds of data.

Numbers:

A Numerical literals Containing only the digits (0-9), Optional sign character (+ or -) and a

decimal point.

The types of Numerical Data types are:

 Integer (signed integer and long int)

 Floating Point

 Boolean Value

 Complex integer

Syntax:

Variable_name = initial_value

10

Where,

Variable_name is user defined name

Initial_name is the value to initialized (Integer, Floating Point, Complex, Boolean)

Integer : a = 10 Complex Integer : Z = 1+2j

Floating Point : b = 5.6 Boolean Value : Flag = True / False

1.Integers:

 Integers are whole Numbers with no Fractional parts and Decimal Point. They can

have Positive, Negative or zero Values.

Data Type Example

Integer type -55,-45,-28,-2,0,5,19,56

Integers belong to the type int.

Example for integers:

>>>1+1

2

>>> a = 4

>>>type(a)

<type „int‟>

2.Floating Point:

 Numbers with fractions or decimal points are called floating point numbers. A

floating point number will consists of signs (+,-) sequence of decimal digits.

Data Type Example

Floating Point numbers -1.25,-1.0,0.0,0.5,12.6,15.2

Floating Point belongs to the type Float.

Example for Float:

>>> c=2.5

>>>type(c)

<type „Float‟

3.Boolean Value:

 Boolean is a data type named after George Boole. Boolean often called bools, which

are either TRUE or FALSE condition.It is the Simplest Built-in type in python.

11

 A Boolean variable can take only two values True (1) and False (0)

Data Type Example

Boolean Value True / false

 Boolean Value belongs to the type Bool.

Example for Float:

>>> c=True

>>>type(c)

<type „bool‟>

 A Boolean true value is always considered to be a Non-zero, Non-null and Non-

empty value.

Sequence:

A sequence is an ordered collection of items, indexed by positive integers. It is a

combination of mutable and non mutable data types.

The types of sequence data types are

 String

 lists

1.Strings:

 Strings are literal or it is a sequence of characters which may consists of letters,

number, special symbols or a combination of these types represented within the pair

of double or single quotation marks.

Creating string is as Simple as assigning a value to a variable.

>>> a = “Hello”

>>>type(a)

<type „str‟>

Operations on Strings:

1. + Operator

2. * Operator

 The + operator concatenate strings

>>> „Horse‟+ „and‟+ „dog‟

Output : „ Horse and dog‟

 The * operator creates a multiple Concatenated Copies of a string

>>> A * 5

12

Output: AAAAA

2. Lists:

 Lists in Python are used to store a list of values.

 It is an ordered sequence of values which may consists of any type of data

(Intger, Float,String etc)

 Values in the list are called element/items.

 They are Mutable and indexed ordered.

To create a list, we define a variable to contain an ordered series of items separated by a

comma. A square bracket is used to enclose the items.

Syntax:

To create an empty list : My_list=[]

To create a list of items : My_list=[item1, item2,item3….]

Example:

#List with Integer

Num_list=[0,5,4,7,8]

#List with String

String_list=[„cat‟, „rat‟, „dog‟, „lion‟]

3. Define variable. Explain how to declare variable and explain about the scope of

variable.

 A variable is basically a name that represent some value, Variable are reserved

memory location to store values.

 Every value in Python has a datatype.Diffferent data types in python are Number,

List, Tuple, Strings etc.

Syntax : Variable_name = Value

Rules for Naming a variable:

 A variable name can contain both Upper case (A-Z) and Lower case characters(a-z)

and Underscore character (_).

 Numbers are allowed, but they should not be used at the beginning of the variable

name. Eg: 1firstname is not valid, firstname1 is valid.

 No Special symbol other than underscore is allowed.

 There are some Keywords that cannot be used as a variable name because they

already have pre-assigned meaning , some of the reserved word are

Print,Input,if,while etc

13

Assigning Values to the variable:

The declaration happens automatically while assigning values to a variable. The equal sign

(=) is used to assign values to variables.

Eg: Name = “Dog”

Int_num= 500

Float_num=45.5

List_num= [“Dog”, 50,25, 0.5]

Re-declare a Variable:

In this we can re-declare the variable even after you have declared it once.

 #Declare a variable and Initialize it:

C = 0

Print c

#re-declare the variable

C= “Welcome”

Print c

4. Write short on Expressions.

An Expression is combination of values, variables and operators.

If we type an expression on the command line, the interpreter evaluates it and displays the

results.

 Here variable initialized to c=0.

 If we re-assign the assign the Variable c

to value “ welcome”

Output:

0

Welcome

14

>>>2+2

4

The evaluation of an expression produces a value. Some legal expression are a follows:

>>> a= 15

>>> a

Output: 15

>>> a + 15

Output: 30

When we type an expression at the prompt, the interpreter evaluates it, which means that it

finds the value of the expression. In the above example “ a” has a value 15 and “a+15” has

a value 15.

Evaluating an expression is not the same as printing a value

>>> Line = “God is Great”

>>>Line

Output: “God is Great”

>>> Print Line

Output: God is Great.

5. Explain about Statements.

 A statement is an instruction that python interpreter can execute.

 There are two kinds of statements.

 Print statement

 Assignment statement.

 When a statement is typed in interactive mode, the interpreter executes it and

displays the result.

 A script usually contains a sequence of statements. If there is more than one

statement, the results appear one at a time as the statements execute.

For example, the script

print 1

15

x = 2

print x

output:

1

2

The assignment statement produces no output.

6. Explain about the concept of tuple assignment.

 The tuple of variables on the left of an assignment to be assigned values from a tuple

on the right of the assignment.

 It is useful to swap the value of two variables.

Example: To swap a, b

Temp=a

a=b

b=temp

Tuple assignment solves this problem neatly

(a,b)=(b,a)

 The number of variables on the left and the number of values on the right have to be

the same:

>>> a, b = 1, 2, 3

ValueError: too many values to unpack.

7. What are the types of operators supported by python language? List the

operators and explain them.

Operator:

 An operator is a special symbol that represents a simple computation like

addition, subtraction,…

 The values (or) the variables are applied on the operator is called as operands.

Types of Operator:

 Python language supports the following types of operators.

 Arithmetic Operators

 Comparison (Relational) Operators

 Assignment Operators

16

 Logical Operators

 Bitwise Operators

 Membership Operators

 Identity Operators

Python Arithmetic Operators

Assume variable a =10,b=20

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand operand. a – b = -10

*Multiplication Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and returns

remainder

b % a = 0

** Exponent Performs exponential (power) calculation on operators a**b =10 to

the power 20

// Floor Division – that divides two numbers and chops off the

fraction part.

9//2 = 4

Python Comparison or relational Operators:

 These operators compare the values on either sides of them and decide the relation among

them. They are also called Relational operators. Assume a=15, b=23

17

Python Assignment Operators:

Assume variable a holds 10 and variable b holds 20, then

Operator Description Example

= Assigns values from right side operands to left side operand c = a + b

assigns value

of a + b into

c

Operator Description Example

== If the values of two operands are equal, then the condition becomes

true.

(a == b)

False(0)

!= If values of two operands are not equal, then condition becomes true.

> If the value of left operand is greater than the value of right operand,

then condition becomes true.

(a > b) is

not true.

< If the value of left operand is less than the value of right operand,

then condition becomes true.

(a < b) is

true.

>= If the value of left operand is greater than or equal to the value of

right operand, then condition becomes true.

(a >= b) is

not true.

<= If the value of left operand is less than or equal to the value of right

operand, then condition becomes true.

(a <= b) is

true

18

+= Add AND It adds right operand to the left operand and assign the result

to left operand

c += a is

equivalent to

c = c + a

-= Subtract

AND

It subtracts right operand from the left operand and assign the

result to left operand

c - = a is

equivalent to

c = c - a

*= Multiply

AND

It multiplies right operand with the left operand and assign

the result to left operand

c * = a is

equivalent to

c = c * a

/= Divide AND It divides left operand with the right operand and assign the

result to left operand

c / = a is

equivalent to

c = c / ac /= a

is equivalent

to c = c / a

%= Modulus

AND

It takes modulus using two operands and assign the result to

left operand

c %= a is

equivalent to

c = c % a

**= Exponent

AND

Performs exponential (power) calculation on operators and

assign value to the left operand

c **= a is

equivalent to

c = c ** a

//= Floor

Division

It performs floor division on operators and assign value to the

left operand

c //= a is

equivalent to

c = c // a

19

Python Bitwise Operators:

Bitwise operator works on bits and performs bit by bit operation. Assume if a = 60; and b =

13; Now in binary format they will be as follows −

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

There are following Bitwise operators supported by Python language

Operator Description Example

& Binary AND Operator copies a bit to the result if it exists in both

operands

(a & b) (means

0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61

(means 0011

1101)

^ Binary XOR It copies the bit if it is set in one operand but not both. (a ^ b) = 49

(means 0011

0001)

<< Binary Left Shift The left operands value is moved left by the number of bits

specified by the right operand.

a << 2 = 240

(means 1111

0000)

>> Binary Right

Shift

The left operands value is moved right by the number of

bits specified by the right operand.

a >> 2 = 15

(means 0000

1111)

20

Python Identity Operators

 Identity operators compare the memory locations of two objects.

 Description Example

is Evaluates to true if the variables on either side of the

operator point to the same object and false otherwise.

x is y, here is results in 1 if

id(x) equals id(y).

is not Evaluates to false if the variables on either side of the

operator point to the same object and true otherwise.

x is not y, here is not results

in 1 if id(x) is not equal to

id(y).

8. Briefly explain about the concept of precedence of operators.

 The list below will show which operator has more precedence over the operators.

 The first operator in the list will run before the second operator below.

OPERATORS MEANING

() Parentheses

** Exponent

*, /, //, % Multiplication, Division, Floor division, Modulus

+,- Addition,subtraction

<<,>> Bitwise shift operators

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

==,!=,>,>=,<,<=,is, is not,in

not, not in
Comparisons ,Identity, Membership operators

21

not Logical NOT

and Logical AND

or Logical OR

Operator precedence examples:

Exponent and Multiplication:

 Exponent will always run before the multiplication equation.

Example:

#Exponent and multiplication

#Exponent runs first

>>>2**4+2

>>>16+2

18

Exponent And Division:

 Exponent will always run before a division equation.

Example:

#Exponent and Division

#Exponent runs first

>>4/2**6

>>4/64

0.0625

Mutiplication and Division:

 Python will run the equation from left to right since multiplication and division has

same precedence.

Example:

#Multiplication and Division

#In this case division ran first the multiplied by 3.

>>>5/4*3

3.75

#In this case 3 is multiplied by 4 then divide by 5

>>>3*4/5

2.4

Multiplication and addition:

22

 Multiplication will run before an addition equation since multiplication has more

precedence over addition.

Example:

#Multiplication and addition

>>>2=4*4

18

Addition and subtraction:

 The equation will run left to right since addition and subtraction are on the same

level.

Example:

#Addition and subtraction

>>>2=3-5+8-4+2-9

-3

EXAMPLE PROBLEMS:

1. X=(15=6)-10*4

Print (x)

In the expression to evaluate the value of x, the brackets have highest of all

precedence.

So this is evaluated before anything else, then * is done and lastly the subtraction.

15+6 is 21

1084 is 40

21-40 is -19

Ans: -19

2. X=17/2%2*3**3

Print(x)

In the expression to evaluate the value of x, the exponentiation is done first and then

division operator followed by modulo and multiplication.

3**3 is 27

17/2 is 8.5

8.5%2 is 0.5

0.5*27 is 13.5

Ans: 13.5

23

9. Illustrate the concept of comments.

 Comments statements are used to provide a summary of the code in plain English to

help future developer for better understand of the code.

 There are two types of comments

 Single line comment.

 Multiline comment.

Single Line comment:

 A single line comment starts with the number sign (#) character:

Example:

compute the percentage of the hour that has elapsed

percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments at the end

of a line:

percentage = (minute * 100) / 60 # percentage of an hour.

Multiline comment:

 Multiple lines can be created by repeating the number sign several times:

#This is a comment

#second line

X=4

10. Explain about the features of module.

 Modules refer to a file containing Python statements and definitions.

 A file containing Python code, for e.g.: example.py is called a module and its

module name would be example.

 We use modules to break down large programs into small manageable and organized

files. Furthermore, modules provide reusability of code.

24

 We can define our most used functions in a module and import it, instead of copying

their definitions into different programs.

Let us create a module. Type the following and save it as example.py

Python Module example

def add(a, b):

 """This program adds two

 numbers and return the result"""

 result = a + b

 return result

Here, we have defined a function add () inside a module named example. The function

takes in two numbers and returns their sum.

How to import modules in Python?

 We can import the definitions inside a module to another module or the interactive

interpreter in Python.

 We use the import keyword to do this. To import our previously defined

module example we type the following in the Python prompt.

>>> import example

 This does not enter the names of the functions defined in example directly in the

current symbol table. It only enters the module name example there.

 Using the module name we can access the function using dot (.) operation. For

example:

>>> example.add(4,5.5)

9.

Python import statement:

We can import a module using import statement and access the definitions inside it using

the dot operator as described above. Here is an example.

Import statement example

To import standard module math

import math

print("The value of pi is", math.pi)

When you run the program, the output will be:

The value of pi is 3.141592653589793

https://www.programiz.com/python-programming/function

25

Python from...import statement:

We can import specific names form a module without importing the module as a whole.

Here is an example.

The from...import * Statement:

It is also possible to import all names from a module into the current namespace by using

the following import statement.

from modname import *

This provides an easy way to import all the items from a module into the current

namespace.

11. Explain about the features of function.

A function is a block of organized, reusable code that is used to perform a single, related

action. Functions provide better modularity for your application and a high degree of code

reusing.

Types of Functions:

Basically, we can divide functions into the following two types:

1. Built-in functions - Functions that are built into Python.

2. User-defined functions - Functions defined by the users themselves.

import only pi from math module

from math import pi

print("The value of pi is", pi)

The value of pi is 3.141592653589793

Built-in Functions

Types of

Functions

User- Defined Functions

https://www.programiz.com/python-programming/built-in-function
https://www.programiz.com/python-programming/user-defined-function

26

Function calls

 A function is a named sequence of statements that performs a computation.

 When you define a function, you specify the name and the sequence of statements.

 Later,you can “call” the function by name. We have already seen one example of a

function call:

>>> type(32)

<type 'int'>

 The name of the function is type.

 The expression in parentheses is called the argument of the function.

 The result, for this function, is the type of the argument. It is common to say that a

function “takes” an argument and “returns” a result. The result is called the return

value.

Type conversion functions

 Python provides built-in functions that convert values from one type to another.

The int function takes any value and converts it to an integer, if it can, or complains

otherwise:

>>> int('32')

32

>>> int('Hello')

ValueError: invalid literal for int(): Hello

The int can convert floating-point values to integers, but it doesn’t round off; it chops

off the fraction part:

>>> int(3.99999)

3

>>> int(-2.3)

-2

Float converts integers and strings to floating-point numbers:

 >>> float(32)

32.0

>>> float('3.14159')

3.14159

Finally, str converts its argument to a string:

>>> str(32)

27

'32'

>>> str(3.14159)

'3.14159'

Math functions

 Python has a math module that provides most of the familiar mathematical functions.

 A module is a file that contains a collection of related functions.

Before we can use the module, we have to import it:

>>> import math

 This statement creates a module object named math. If you print the module object,

you get some information about it:

>>> print math

<module 'math' from '/usr/lib/python2.5/lib-dynload/math.so'>

 The module object contains the functions and variables defined in the module.

 To access one of the functions, you have to specify the name of the module and the

name of the function, separated by a dot (also known as a period). This format is

called dot notation.

Example:

>>> ratio = signal_power / noise_power

 >>> decibels = 10 * math.log10(ratio)

The example computes the logarithm base 10 of the signal-to-noise ratio.

The math module also provides a function called log that computes logarithms base e.

12. Explain about flow of execution.

 The orders in which statements are executed are called flow of execution.

 Execution always begins at the first statement of the program. Statements are

executed one at a time, in order from top to bottom.

 Function definitions do not alter the flow of execution of the program, but remember

that statements, inside the function are not executed until the function is called.

 A function call is like a detour in the flow of execution.

 Instead of going to the next statement, the flow jumps to the body of the function,

executes all the statements there, and then comes back to pick up where it left off.

28

 That sounds simple enough, until you remember that one function can call another.

While in the middle of one function, the program might have to execute the

statements in another function.

Example:

1. Def pow(5,2)

2. Y=b**p

3. Return y

4.

5. def square(x)

6. a=pow(x,2)

7. return a

8.

9. X=5

10. Result=square(x)

11. Print(result)

Output:

25

13. Explain the concept of parameters and arguments

 The arguments are assigned to variables called parameters.

EXAMPLE:

def print_twice(Flower):

Print flower

Print flower

 This function assigns the argument to a parameter named flower.

 When the function is called, it prints the value of the parameter twice.

EXAMPLE:

>>>print_twice(„world‟)

World

World

>>>print_twice(56)

56

56

>>>print_twice(math.pi)

29

3.14

3.14

The same rule of composition that apply to built in functions also apply to user

defined functions, so we can use any kind of expression as an argument for

print_twice:

>>>print_twice(„spam‟*4)

Spam spam spam spam

Spam spam spam spam

>>>print_twice(math.cos(math.pi))

-1.0

-1.0

 The argument is evaluated before the function is called,so in the example the

expression „spam‟*4 and math.cos (math.pi)are only evaluated once.

 The variable can also be used as an argument:

EXAMPLE:

>>>book=‟python‟

>>>print_twice(book)

Python

python

UNIT-V

FILES, MODULES, PACKAGES

PART-A

1. What is file? List out its types.

 FILES refer to a location with Filename that stores information.

 File must be opened to read or Write. Moreover it must be closed after read/write operations to avoid

data damages.

 Almost all the information Stored in a computer must be in a file.

Types:

 Data files

 Text files

 Program files.

2. List out the types of file operations.
 Open the file.

 Read or write

 Close the file

3. Give the syntax and example of file open.

Syntax:

File_VariableName=Open (“Filename”, ‘mode’)

Example:

f = open(“text.txt”) #open file in current directory

f = open (“text.txt”, ‘w’) #write in text mode

f = open(“text.txt”, ‘r+b’) # read in binary mode

4. What is error? List out the basic categories of error.

 Errors or mistakes in a program are often referred to as bugs.

 The process of finding and eliminating error is called debugging.

 Errors are classified into three groups.

1. Syntax errors.

2. Runtime errors.

3. Logical errors.

5. List out the common python syntax errors.

 Leaving out a keyword.

 Leaving a symbols such as colon, comma or brackets.

 Misspelling a keyword.

6. Give some example of runtime errors.

Division by zero.

Trying to access a file which doesn’t exist.

Accessing a list element or dictionary values which doesn’t exist.

7. Give some examples of logical errors.

 Using integer division instead of floating point division.

 Wrong operator precedence.

 Mistakes in Boolean expression.

 Indenting a block to the wrong level.

 Error in Boolean Expression.

8. What is exception in python?

 Exception is an event, which occurs during the execution of a program.

 Exception disrupts the normal flow of the programs instructions.

 Exception is a python object that represents an error.

9. How to handle exception in python.

 Python provides two very important features to handle any unexpected error in the

python programs and to add debugging capabilities in item.

 Exception handling.

 Assertions.

10. List any four standard exceptions in python.

Standard Exceptions:

1. Floating Point Error-Raised when floating point calculation fails.

2. Import error-Raised when an import statement fails.

3. Syntax error-Raised when there is an error in python syntax.

4. Indentation error-Raised when indentation is not specified properly

11. Give the syntax for raise exception.

12. We can raise exceptions in several ways by using the raise statement.

Syntax:

Raise(Exception(,args(,traceback)))

Example:

 def get_age():

age = int(input("Please enter your age: "))

 if age < 0:

 my_error = ValueError("{0} is not a valid age".format(age))

raise my_error

return age

Output:

raise ValueError("{0} is not a valid age".format(age))

12. What are the advantages of exception handling?

 It separates normal code from code that handles errors.

 Exception can easily be passed along functions in the stack until they reach a

function.

13. Differentiate module and package in python.

Module Package

1. A module is a single file that are

imported under one import.

2. Example:

import my_module

1. A package is a collection of modules

in directories that give a package

hierarchy.

2. Example:

from pots import pots

PART-B

1. Discuss with suitable example (i) Read a File (ii) Write a file (iii) Close a file

(or)

Explain the file concepts in detail with example.

FILES

 FILES refer to a location with Filename that stores information. Like a book a File must be opened to

read or Write. Moreover it must be closed after read/write operations to avoid data damages.

 Almost all the information Stored in a computer must be in a file.

 A File is a named location on disk to store related information.

CREATE A TEXT FILE:

 Text file in Python, Lets Create a new text file:

Example:

file = open(“sample1.txt”, “w”)

file.write(“Hello World”)

file.write(“God is great”)

file.write(“Think Positive”)

file.close()

 If you Open the text file, Python interpreter will add the text into the file.

Output:

Hello World

God is great

Think Positive.

OPENING A FILE:

 Python has a built-in function Open() to open a file.

 The contents of a file can be read by opening the file in read mode. There are various modes to open a

file. They are listed below:

Syntax:

File_VariableName=Open (“Filename”, ‘mode’)

Where

 “File_VariableName” is the variable to add the file object.

 “Mode” tells the interpreter and developer which way the file will be used.

Example:

f = open(“text.txt”) #open file in current directory

f = open (“text.txt”, ‘w’) #write in text mode

f = open(“text.txt”, ‘r+b’) # read in binary mode

READING AND WRITING FILES:

 In General,there are two methods to manipulate the files, They are given below:

 Write()

 Read ()

Write () Method:

 This method writes any string to an open file.

Syntax:

 File_Variablename.Write(string);

Example

#open a file

f = open(“sample.txt”, ‘w’)

f.write(“ God is Great.\n God is always with me!\n”);

#close the opened file

f.close()

In the above example the methods would create sample.txt file and would write the given content in that file,

finally it would close that file. (\n) adds a newline character.

Sample.txt

God is Great

God is always with me!

Read () Method:

 This Method read a string from a file. It is important to note that Python strings can have binary data

apart from text data.

Syntax

File_variablename.read(count);

Example:

#opens a file

f = open (“sample.txt”, “r+”)

str=f.read(10);

print(“Read the string:”,str)

f.close()

Output: Read the string: God is great.

2. Explain about the concepts of format operator.

 Format operator is used to print the output in a desired format.

 The % operator is the format operator.

 It is also called as interpolation operator.

 The % operator is also used for modulus.

 The usage varies according to the operands of the operator.

Syntax:

<format operator>% values.

Example:

>>>camels=42

>>>’%d’% camels

‘42’

>>>camels=42

>>>’I have spotted %d camels’% camels

‘I have spotted 42 camels’

>>>In %d years I have spotted %f %s’(3,0.1,’camels’)

‘In 3 years I have spotted 0.1 camels’

3. Illustrate about the concept of errors and exception. Explain the types of error.

 Errors or mistakes in a program are often referred to as bugs.

 The process of finding and eliminating error is called debugging.

 Errors are classified into three groups.

4. Syntax errors.

5. Runtime errors.

6. Logical errors.

SYNTAX ERRORS:

 Python can only execute a program, if the syntax is correct, otherwise interpreter displays error

message.

 Python will find these kinds of error when it tries to parse a program and exit with an error message

without running anything.

 Syntax errors are mistakes in the use of the python language or grammar mistakes.

Common python syntax errors include:

 Leaving out a keyword.

 Leaving a symbols such as colon, comma or brackets.

 Misspelling a keyword

 Incorrect indentation.

RUNTIME ERROR:

 The second type of error is a runtime error. It does not appear until after the program has started

running.

 The program may exit unexpectedly during execution.

 Runtime error was not detected when the program was parsed.

Common python runtime errors include:

 Division by zero.

Ex:

>>> print(55/0)

ZeroDivisionError: integer division or modulo by zero.

 Trying to access a file which doesn’t exist.

 Accessing a list element or dictionary values which doesn’t exist.

Ex:
>>> a = []
>>> print(a[5])

IndexError: list index out of range

 Using an identifier which has not be defined.

LOGICAL ERRORS:

 Logical errors are more difficult to fix.

 The program runs without crashing, but produces an incorrect result.

 The error is caused by a mistake in the programs logic.

 Error message will not be appeared, because no syntax or runtime error has occurred.

Common python logical errors include:

 Using integer division instead of floating point division.

 Wrong operator precedence.

 Mistakes in Boolean expression.

 Indenting a block to the wrong level.

 Error in Boolean Expression.

4. Describe in detail how exceptions are handled in python. Give relevant examples.

 Exception is an event, which occurs during the execution of a program.

 Exception disrupts the normal flow of the programs instructions.

 Exception is a python object that represents an error.

Standard Exceptions:

1. Floating Point Error-Raised when floating point calculation fails.

2. Import error-Raised when an import statement fails.

3. Syntax error-Raised when there is an error in python syntax.

4. Indentation error-Raised when indentation is not specified properly.

5. EOF error-Raised when there is no input until the end of while.

6. IOError- open()function when trying to open a file that does not exist.

7. ArithmeticError-Base class for all errors that occur for numeric calculation.

8. AssertionError-Raised in case of failure of the assert statement.

9. RuntimeError-Raised when a generated error does not fall into any category.

10. ValueError-Raised when the built in functions for a data type has the valid type of arguments,but the

have invalid values specified.

Syntax:

Try:

Operator

……

Except exception:

If there is exception, execute this block.

Except Exception

If there is exception, execute this block.

…..

else

If there is no exception, then execute this block.

Example:

It tries to open a file where do not have write permission, so it raises exception.

Try:

fh=open(“testfile”,’r’)

fh.write(“This is my test file for exception handling!”)

Except IOerror

Print(“error:can’t find file or read data”)

else:

Print(“written content in the file successfully”)

Output:

Error: can’t find file or read data.

Raising An Exceptions:

 We can raise exceptions in several ways by using the raise statement.

Syntax:

Raise(Exception(,args(,traceback)))

Example:

def get_age():

age = int(input("Please enter your age: "))

 if age < 0:

Create a new instance of an exception

 my_error = ValueError("{0} is not a valid age".format(age))

raise my_error

return age

Output:

raise ValueError("{0} is not a valid age".format(age))

5. Illustrate the important of modules with examples.

 Modules refer to a file containing Python statements and definitions.

 Modules to break down large programs into small manageable and organized files.

Python Module example

def add(a, b):

 """This program adds two

 numbers and return the result"""

 result = a + b

 return result

How to import modules in Python?

 We can import the definitions inside a module to another module or the interactive interpreter in

Python.

 >>> import example

 Using the module name we can access the function using dot (.) operation.

 For example:

>>> example.add(4,5.5)

Python import statement:

We can import a module using import statement and access the definitions inside it using the dot

operator.

Python from...import statement:

 Import specific names form a module without importing the module as a whole. Here is

an example.

The from...import * Statement:

 It is also possible to import all names from a module into the current namespace by using

the following import statement.

from modname import *

This provides an easy way to import all the items from a module into the current namespace.

6. Discuss Python Package in detail.

 A package is a collection of modules in directories that give a package hierarchy.

 The package gives the hierarchical file director structure of the python application environment

that consists of modules and package.

 A package is a directory which contains a special file called __init__.py

Import statement example

import math

print("The value of pi is", math.pi)

OUTPUT:

 The value of pi is 3.14

import only pi from math module

from math import pi

print("The value of pi is", pi)

The value of pi is 3.14

The value of pi is 3.141592653589793

Example:

 If the project team has decided to maintain all the modules in “MyProject” directory, a folder in

the name of “MyProject” is creacted and the file __init__.py is placed in that folder.

 The package has two normal programs and two subpackages.

Importing module from a package:

The modules in package can be used by importing then in python program.

Syntax:

Import<packageName>.{<subpackageName>.}ModuleName>

 The {} braces specify that there can be any number of subpackages.

Example:

Import MyProject.subproject1.prog1_1

MyProject.subProject1.Prog1_1.start()

